首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

2.
In this paper, we consider a constant stress accelerated life test terminated by a hybrid Type-I censoring at the first stress level. The model is based on a general log-location-scale lifetime distribution with mean life being a linear function of stress and with constant scale. We obtain the maximum likelihood estimators (MLE) and the approximate maximum likelihood estimators (AMLE) of the model parameters. Approximate confidence intervals, likelihood ratio tests and two bootstrap methods are used to construct confidence intervals for the unknown parameters of the Weibull and lognormal distributions using the MLEs. Finally, a simulation study and two illustrative examples are provided to demonstrate the performance of the developed inferential methods.  相似文献   

3.
A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.  相似文献   

4.
Following the work of Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring. Comm Statist Theory Methods. 1988;17:1857–1870], several results have been developed regarding the exact likelihood inference of exponential parameters based on different forms of censored samples. In this paper, the conditional maximum likelihood estimators (MLEs) of two exponential mean parameters are derived under joint generalized Type-I hybrid censoring on the two samples. The moment generating functions (MGFs) and the exact densities of the conditional MLEs are obtained, using which exact confidence intervals are then developed for the model parameters. We also derive the means, variances, and mean squared errors of these estimates. An efficient computational method is developed based on the joint MGF. Finally, an example is presented to illustrate the methods of inference developed here.  相似文献   

5.
A progressive hybrid censoring scheme is a mixture of type-I and type-II progressive censoring schemes. In this paper, we mainly consider the analysis of progressive type-II hybrid-censored data when the lifetime distribution of the individual item is the normal and extreme value distributions. Since the maximum likelihood estimators (MLEs) of these parameters cannot be obtained in the closed form, we propose to use the expectation and maximization (EM) algorithm to compute the MLEs. Also, the Newton–Raphson method is used to estimate the model parameters. The asymptotic variance–covariance matrix of the MLEs under EM framework is obtained by Fisher information matrix using the missing information and asymptotic confidence intervals for the parameters are then constructed. This study will end up with comparing the two methods of estimation and the asymptotic confidence intervals of coverage probabilities corresponding to the missing information principle and the observed information matrix through a simulation study, illustrated examples and real data analysis.  相似文献   

6.
In this article, a competing risks model based on exponential distributions is considered under the adaptive Type-II progressively censoring scheme introduced by Ng et al. [2009, Naval Research Logistics 56:687-698], for life testing or reliability experiment. Moreover, we assumed that some causes of failures are unknown. The maximum likelihood estimators (MLEs) of unknown parameters are established. The exact conditional and the asymptotic distributions of the obtained estimators are derived to construct the confidence intervals as well as the two different bootstraps of different unknown parameters. Under suitable priors on the unknown parameters, Bayes estimates and the corresponding two sides of Bayesian probability intervals are obtained. Also, for the purpose of evaluating the average bias and mean square error of the MLEs, and comparing the confidence intervals based on all mentioned methods, a simulation study was carried out. Finally, we present one real dataset to conduct the proposed methods.  相似文献   

7.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

8.
Recently, Rayleigh distribution has received considerable attention in the statistical literature. In this article, we consider the point and interval estimation of the functions of the unknown parameters of a two-parameter Rayleigh distribution. First, we obtain the maximum likelihood estimators (MLEs) of the unknown parameters. The MLEs cannot be obtained in explicit forms, and we propose to use the maximization of the profile log-likelihood function to compute the MLEs. We further consider the Bayesian inference of the unknown parameters. The Bayes’ estimates and the associated credible intervals cannot be obtained in closed forms. We use the importance sampling technique to approximate (compute) the Bayes’ estimates and the associated credible intervals. For comparison purposes, we have also used the exact method to compute the Bayes’ estimates and the corresponding credible intervals. Monte Carlo simulations are performed to compare the performances of the proposed method, and one dataset has been analyzed for illustrative purposes. We further consider the Bayes’ prediction problem based on the observed samples, and provide the appropriate predictive intervals. A data example has been provided for illustrative purposes.  相似文献   

9.
《Statistics》2012,46(6):1329-1356
ABSTRACT

Recently Mondal and Kundu [Mondal S, Kundu D. A new two sample type-II progressive censoring scheme. Commun Stat Theory Methods. 2018. doi:10.1080/03610926.2018.1472781] introduced a Type-II progressive censoring scheme for two populations. In this article, we extend the above scheme for more than two populations. The aim of this paper is to study the statistical inference under the multi-sample Type-II progressive censoring scheme, when the underlying distributions are exponential. We derive the maximum likelihood estimators (MLEs) of the unknown parameters when they exist and find out their exact distributions. The stochastic monotonicity of the MLEs has been established and this property can be used to construct exact confidence intervals of the parameters via pivoting the cumulative distribution functions of the MLEs. The distributional properties of the ordered failure times are also obtained. The Bayesian analysis of the unknown model parameters has been provided. The performances of the different methods have been examined by extensive Monte Carlo simulations. We analyse two data sets for illustrative purposes.  相似文献   

10.
In this paper, we consider some problems of estimation and reconstruction based on middle censored competing risks data. It is assumed that the lifetime distributions of the latent failure times are independent and exponential distributed with different parameters and also that the censoring mechanism is independent. The maximum likelihood estimators (MLEs) of the unknown parameters are obtained. We then use the asymptotic distribution of the MLEs to construct approximate confidence intervals. Based on gamma priors, Lindley's approximation method is applied to obtain the Bayesian estimates of the unknown parameters under squared error loss function. Since it is not possible to construct the credible intervals, we propose and implement the Gibbs sampling technique to construct the credible intervals. Several point reconstructors for failure time of censored units are provided. Finally, a simulation study is given by Monte-Carlo simulations to evaluate the performances of the different methods and a data set is analysed to illustrate the proposed procedures.  相似文献   

11.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

12.
We discuss the maximum likelihood estimates (MLEs) of the parameters of the log-gamma distribution based on progressively Type-II censored samples. We use the profile likelihood approach to tackle the problem of the estimation of the shape parameter κ. We derive approximate maximum likelihood estimators of the parameters μ and σ and use them as initial values in the determination of the MLEs through the Newton–Raphson method. Next, we discuss the EM algorithm and propose a modified EM algorithm for the determination of the MLEs. A simulation study is conducted to evaluate the bias and mean square error of these estimators and examine their behavior as the progressive censoring scheme and the shape parameter vary. We also discuss the interval estimation of the parameters μ and σ and show that the intervals based on the asymptotic normality of MLEs have very poor probability coverages for small values of m. Finally, we present two examples to illustrate all the methods of inference discussed in this paper.  相似文献   

13.
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems.  相似文献   

14.
In this article, we discuss the maximum likelihood estimators and approximate maximum likelihood estimators of the parameters of the Weibull distribution with two different progressively hybrid censoring schemes. We also present the associated expressions of the expected total test time and the expected effective sample size which will be useful for experimental planning purpose. Finally, the efficiency of the point estimation of the parameters based on the two progressive hybrid censoring schemes are compared and the merits of each censoring scheme are discussed.  相似文献   

15.
In this paper, the statistical inference of the unknown parameters of a two-parameter inverse Weibull (IW) distribution based on the progressive type-II censored sample has been considered. The maximum likelihood estimators (MLEs) cannot be obtained in explicit forms, hence the approximate MLEs are proposed, which are in explicit forms. The Bayes and generalized Bayes estimators for the IW parameters and the reliability function based on the squared error and Linex loss functions are provided. The Bayes and generalized Bayes estimators cannot be obtained explicitly, hence Lindley's approximation is used to obtain the Bayes and generalized Bayes estimators. Furthermore, the highest posterior density credible intervals of the unknown parameters based on Gibbs sampling technique are computed, and using an optimality criterion the optimal censoring scheme has been suggested. Simulation experiments are performed to see the effectiveness of the different estimators. Finally, two data sets have been analysed for illustrative purposes.  相似文献   

16.
In this article, the simple step-stress model is considered based on generalized Type-I hybrid censored data from the exponential distribution. The maximum likelihood estimators (MLEs) of the unknown parameters are derived assuming a cumulative exposure model. We then derive the exact distributions of the MLEs of the parameters using conditional moment generating functions. The Bayesian estimators of the parameters are derived and then compared with the MLEs. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs, Bayesian, and the parametric bootstrap methods. The problem of determining the optimal stress-changing point is discussed and the MLEs of the pth quantile and reliability functions at the use condition are obtained. Finally, Monte Carlo simulation and some numerical results are presented for illustrating all the inferential methods developed here.  相似文献   

17.
The Birnbaum–Saunders (BS) distribution is a positively skewed distribution and is a common model for analysing lifetime data. In this paper, we discuss the existence and uniqueness of the maximum likelihood estimates (MLEs) of the parameters of BS distribution based on Type-I, Type-II and hybrid censored samples. The line of proof is based on the monotonicity property of the likelihood function. We then describe the numerical iterative procedure for determining the MLEs of the parameters, and point out briefly some recently developed simple methods of estimation in the case of Type-II censoring. Some graphical illustrations of the approach are given for three real data from the reliability literature. Finally, for illustrative purpose, we also present an example in which the MLEs do not exist.  相似文献   

18.
The extreme value distribution has been extensively used to model natural phenomena such as rainfall and floods, and also in modeling lifetimes and material strengths. Maximum likelihood estimation (MLE) for the parameters of the extreme value distribution leads to likelihood equations that have to be solved numerically, even when the complete sample is available. In this paper, we discuss point and interval estimation based on progressively Type-II censored samples. Through an approximation in the likelihood equations, we obtain explicit estimators which are approximations to the MLEs. Using these approximate estimators as starting values, we obtain the MLEs using an iterative method and examine numerically their bias and mean squared error. The approximate estimators compare quite favorably to the MLEs in terms of both bias and efficiency. Results of the simulation study, however, show that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic normality are unsatisfactory for both these estimators and particularly so when the effective sample size is small. We, therefore, suggest the use of unconditional simulated percentage points of these pivotal quantities for the construction of confidence intervals. The results are presented for a wide range of sample sizes and different progressive censoring schemes. We conclude with an illustrative example.  相似文献   

19.
The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis–Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.  相似文献   

20.
The maximum likelihood estimates (MLEs) of the parameters of a two-parameter lognormal distribution with left truncation and right censoring are developed through the Expectation Maximization (EM) algorithm. For comparative purpose, the MLEs are also obtained by the Newton–Raphson method. The asymptotic variance-covariance matrix of the MLEs is obtained by using the missing information principle, under the EM framework. Then, using asymptotic normality of the MLEs, asymptotic confidence intervals for the parameters are constructed. Asymptotic confidence intervals are also obtained using the estimated variance of the MLEs by the observed information matrix, and by using parametric bootstrap technique. Different confidence intervals are then compared in terms of coverage probabilities, through a Monte Carlo simulation study. A prediction problem concerning the future lifetime of a right censored unit is also considered. A numerical example is given to illustrate all the inferential methods developed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号