首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
The confidence interval (CI) for the difference between two proportions has been an important and active research topic, especially in the context of non-inferiority hypothesis testing. Issues concerning the Type 1 error rate, power, coverage rate and aberrations have been extensively studied for non-stratified cases. However, stratified confidence intervals are frequently used in non-inferiority trials and similar settings. In this paper, several methods for stratified confidence intervals for the difference between two proportions, including existing methods and novel extensions from unstratified CIs, are evaluated across different scenarios. When sparsity across the strata is not a concern, adding imputed observations to the stratification analysis can strengthen Type-1 error control without substantial loss of power. When sparseness of data is a concern, most of the evaluated methods fail to control Type-1 error; the modified stratified t-test CI is an exception. We recommend the modified stratified t-test CI as the most useful and flexible method across the respective scenarios; the modified stratified Wald CI may be useful in settings where sparsity is unlikely. These findings substantially contribute to the application of stratified CIs for non-inferiority testing of differences between two proportions.  相似文献   

3.
Proportion differences are often used to estimate and test treatment effects in clinical trials with binary outcomes. In order to adjust for other covariates or intra-subject correlation among repeated measures, logistic regression or longitudinal data analysis models such as generalized estimating equation or generalized linear mixed models may be used for the analyses. However, these analysis models are often based on the logit link which results in parameter estimates and comparisons in the log-odds ratio scale rather than in the proportion difference scale. A two-step method is proposed in the literature to approximate the calculation of confidence intervals for the proportion difference using a concept of effective sample sizes. However, the performance of this two-step method has not been investigated in their paper. On this note, we examine the properties of the two-step method and propose an adjustment to the effective sample size formula based on Bayesian information theory. Simulations are conducted to evaluate the performance and to show that the modified effective sample size improves the coverage property of the confidence intervals.  相似文献   

4.
We propose a new adjustment for constructing an improved version of the Wald interval for linear combinations of binomial proportions, which addresses the presence of extremal samples. A comparative simulation study was carried out to investigate the performance of this new variant with respect to the exact coverage probability, expected interval length, and mesial and distal noncoverage probabilities. Additionally, we discuss the application of a criterion for interpreting interval location in the case of small samples and/or in situations in which extremal observations exist. The confidence intervals obtained from the new variant performed better for some evaluation measures.  相似文献   

5.
This paper uses graphical methods to illustrate and compare the coverage properties of a number of methods for calculating confidence intervals for the difference between two independent binomial proportions. We investigate both small‐sample and large‐sample properties of both two‐sided and one‐sided coverage, with an emphasis on asymptotic methods. In terms of aligning the smoothed coverage probability surface with the nominal confidence level, we find that the score‐based methods on the whole have the best two‐sided coverage, although they have slight deficiencies for confidence levels of 90% or lower. For an easily taught, hand‐calculated method, the Brown‐Li ‘Jeffreys’ method appears to perform reasonably well, and in most situations, it has better one‐sided coverage than the widely recommended alternatives. In general, we find that the one‐sided properties of many of the available methods are surprisingly poor. In fact, almost none of the existing asymptotic methods achieve equal coverage on both sides of the interval, even with large sample sizes, and consequently if used as a non‐inferiority test, the type I error rate (which is equal to the one‐sided non‐coverage probability) can be inflated. The only exception is the Gart‐Nam ‘skewness‐corrected’ method, which we express using modified notation in order to include a bias correction for improved small‐sample performance, and an optional continuity correction for those seeking more conservative coverage. Using a weighted average of two complementary methods, we also define a new hybrid method that almost matches the performance of the Gart‐Nam interval. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Motivated by a study on comparing sensitivities and specificities of two diagnostic tests in a paired design when the sample size is small, we first derived an Edgeworth expansion for the studentized difference between two binomial proportions of paired data. The Edgeworth expansion can help us understand why the usual Wald interval for the difference has poor coverage performance in the small sample size. Based on the Edgeworth expansion, we then derived a transformation based confidence interval for the difference. The new interval removes the skewness in the Edgeworth expansion; the new interval is easy to compute, and its coverage probability converges to the nominal level at a rate of O(n−1/2). Numerical results indicate that the new interval has the average coverage probability that is very close to the nominal level on average even for sample sizes as small as 10. Numerical results also indicate this new interval has better average coverage accuracy than the best existing intervals in finite sample sizes.  相似文献   

7.
The problem of testing homogeneity of several group means is considered against some patterned alternatives for the one-way classified data. The patterns of interest include the simple-tree and the trend alternatives. The approach is to begin with some suitably defined one-sample confidence intervals for the groups in a graphical display. Depending on the pattern of interest, orientation features of the display are examined, more formally, using proposed overall tests or rules. In the classical setup under normality, the case of known common variance is treated in detail; extensions to the case of unknown variance are indicated. When normality is in doubt, a nonparametric procedure based on the sign test is proposed. The necessary critical values are percentiles of either a multivariate normal distribution or a multivariate t-distribution. Although some existing tables can be used for the critical values (or the P-values) in some special cases, in general, the use of simulations is recommended and the steps are detailed in the appendix. An illustrative numerical example is provided.  相似文献   

8.
Group testing has been used in many fields of study to estimate proportions. When groups are of different size, the derivation of exact confidence intervals is complicated by the lack of a unique ordering of the event space. An exact interval estimation method is described here, in which outcomes are ordered according to a likelihood ratio statistic. The method is compared with another exact method, in which outcomes are ordered by their associated MLE. Plots of the P‐value against the proportion are useful in examining the properties of the methods. Coverage provided by the intervals is assessed using several realistic grouptesting procedures. The method based on the likelihood ratio, with a mid‐P correction, is shown to give very good coverage in terms of closeness to the nominal level, and is recommended for this type of problem.  相似文献   

9.
In this paper, we consider three distribution-free confidence intervals for quantiles given joint records from two independent sequences of continuous random variables with a common continuous distribution function. The coverage probabilities of these intervals are compared. We then compute the universal bounds of the expected widths of the proposed confidence intervals. These results naturally extend to any number of independent sequences instead of just two. Finally, the proposed confidence intervals are applied for a real data set to illustrate the practical usefulness of the procedures developed here.  相似文献   

10.
In this paper we consider and propose some confidence intervals for estimating the mean or difference of means of skewed populations. We extend the median t interval to the two sample problem. Further, we suggest using the bootstrap to find the critical points for use in the calculation of median t intervals. A simulation study has been made to compare the performance of the intervals and a real life example has been considered to illustrate the application of the methods.  相似文献   

11.
12.
A new result is proved on the difference between ML and REML in the classical growth curve model, concerning the estimated variances of the regression coefficients. Simulations indicate that REML provides estimated variances closer to their true corresponding values, giving confidence intervals which are not misleadingly short.  相似文献   

13.
In the present paper, simultaneous confidence interval estimates are constructed for the mortality measures RSMR. based on propor¬tional mortality measures SPMR. in epidemiologic studies for several competing risks of death to which the individuals in the study are exposed. It is demonstrated that, under a reasonable assumption, the joint sampling distribution of the statistics X. = RSMR./SPMR. for M competing risks9 may be approximated by means of a multi-variafe normal distribution, Sidak's (1967, 1968) mulfivariate normal probability inequalities are applied to construct the simultaneous confidence intervals for the measures RSMR., i=l3 2, ..., M. These are valid regardless of the covariance structure among the risks, As a particular case if the risks may be assumed as independent, our confidence intervals reduce to those for a single measure RSMR., which are narrower than those of Kupper et al., (1978), In this sense, our paper generalizes the results presently available in the literature in two directions; first, to obtain narrower confidence limits, and second3 to discuss the case of competing risks of death irrespective of their covariance structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号