首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
While all nonsequential unbiased estimators of the normal mean have variances which must obey the Cramér-Rao inequality, it is shown that some sequential unbiased estimators do not.  相似文献   

2.
We examine the issue of asymptotic efficiency of estimation for response adaptive designs of clinical trials, from which the collected data set contains a dependency structure. We establish the asymptotic lower bound of exponential rates for consistent estimators. Under certain regularity conditions, we show that the maximum likelihood estimator achieves the asymptotic lower bound for response adaptive trials with dichotomous responses. Furthermore, it is shown that the maximum likelihood estimator of the treatment effect is asymptotically efficient in the Bahadur sense for response adaptive clinical trials.  相似文献   

3.
In the paper the problem of nonlinear unbiased estimation of expectation in linear models is considered. The considerations are restricted to linear plus quadratic estimators with quadratic parts invariant under a group of translations. The one way classification model is considered in detail, for which an explicit formula for the locally best estimators is presented. A numerical evaluation of variances of the best estimators is given for some unbalanced one way classification models and compared with the variance of the ordinary linear estimators.  相似文献   

4.
In this paper, three competing survival function estimators are compared under the assumptions of the so-called Koziol– Green model, which is a simple model of informative random censoring. It is shown that the model specific estimators of Ebrahimi and Abdushukurov, Cheng, and Lin are asymptotically equivalent. Further, exact expressions for the (noncentral) moments of these estimators are given, and their biases are analytically compared with the bias of the familiar Kaplan–Meier estimator. Finally, MSE comparisons of the three estimators are given for some selected rates of censoring.  相似文献   

5.
This paper is concerned with semiparametric discrete kernel estimators when the unknown count distribution can be considered to have a general weighted Poisson form. The estimator is constructed by multiplying the Poisson estimate with a nonparametric discrete kernel-type estimate of the Poisson weight function. Comparisons are then carried out with the ordinary discrete kernel probability mass function estimators. The Poisson weight function is thus a local multiplicative correction factor, and is considered as the uniform measure to detect departures from the equidispersed Poisson distribution. In this way, the effects of dispersion and zero-proportion with respect to the standard Poisson distribution are also minimized. This method of estimation is also applied to the weighted binomial form for the count distribution having a finite support. The proposed estimators, in addition to being simple, easy-to-implement and effective, also outperform the competing nonparametric and parametric estimators in finite-sample situations. Two examples illustrate this new semiparametric estimation.  相似文献   

6.
We develop statistical inferential tools for estimating and comparing conditional tail expectation (CTE) functions, which are of considerable interest in actuarial science. In particular, we construct estimators for the CTE functions, develop the necessary asymptotic theory for the estimators, and then use the theory for constructing confidence intervals and bands for the functions. Both parametric and non-parametric approaches are explored. Simulation studies illustrate the performance of estimators in various situations. Results are obtained under minimal assumptions, and the general Vervaat process plays a crucial role in achieving these goals.  相似文献   

7.
The mean vector associated with several independent variates from the exponential subclass of Hudson (1978) is estimated under weighted squared error loss. In particular, the formal Bayes and “Stein-like” estimators of the mean vector are given. Conditions are also given under which these estimators dominate any of the “natural estimators”. Our conditions for dominance are motivated by a result of Stein (1981), who treated the Np (θ, I) case with p ≥ 3. Stein showed that formal Bayes estimators dominate the usual estimator if the marginal density of the data is superharmonic. Our present exponential class generalization entails an elliptic differential inequality in some natural variables. Actually, we assume that each component of the data vector has a probability density function which satisfies a certain differential equation. While the densities of Hudson (1978) are particular solutions of this equation, other solutions are not of the exponential class if certain parameters are unknown. Our approach allows for the possibility of extending the parametric Stein-theory to useful nonexponential cases, but the problem of nuisance parameters is not treated here.  相似文献   

8.
The paper proposes a new calibration estimator for the distribution function of the study variable. This estimator is a distribution function unlike others estimators that use auxiliary information. Comparisons are made with existing estimators in two simulation studies.  相似文献   

9.
The estimation of the mean of an univariate normal population with unknown variance is considered when uncertain non-sample prior information is available. Alternative estimators are defined to incorporate both the sample as well as the non-sample information in the estimation process. Some of the important statistical properties of the restricted, preliminary test, and shrinkage estimators are investigated. The performances of the estimators are compared based on the criteria of unbiasedness and mean square error in order to search for a ‘best’ estimator. Both analytical and graphical methods are explored. There is no superior estimator that uniformly dominates the others. However, if the non-sample information regarding the value of the mean is close to its true value, the shrinkage estimator over performs the rest of the estimators. Received: June 19, 1999; revised version: March 23, 2000  相似文献   

10.
In this article, robust estimation and prediction in multivariate autoregressive models with exogenous variables (VARX) are considered. The conditional least squares (CLS) estimators are known to be non-robust when outliers occur. To obtain robust estimators, the method introduced in Duchesne [2005. Robust and powerful serial correlation tests with new robust estimates in ARX models. J. Time Ser. Anal. 26, 49–81] and Bou Hamad and Duchesne [2005. On robust diagnostics at individual lags using RA-ARX estimators. In: Duchesne, P., Rémillard, B. (Eds.), Statistical Modeling and Analysis for Complex Data Problems. Springer, New York] is generalized for VARX models. The asymptotic distribution of the new estimators is studied and from this is obtained in particular the asymptotic covariance matrix of the robust estimators. Classical conditional prediction intervals normally rely on estimators such as the usual non-robust CLS estimators. In the presence of outliers, such as additive outliers, these classical predictions can be severely biased. More generally, the occurrence of outliers may invalidate the usual conditional prediction intervals. Consequently, the new robust methodology is used to develop robust conditional prediction intervals which take into account parameter estimation uncertainty. In a simulation study, we investigate the finite sample properties of the robust prediction intervals under several scenarios for the occurrence of the outliers, and the new intervals are compared to non-robust intervals based on classical CLS estimators.  相似文献   

11.
In this paper we propose a new robust estimator in the context of two-stage estimation methods directed towards the correction of endogeneity problems in linear models. Our estimator is a combination of Huber estimators for each of the two stages, with scale corrections implemented using preliminary median absolute deviation estimators. In this way we obtain a two-stage estimation procedure that is an interesting compromise between concerns of simplicity of calculation, robustness and efficiency. This method compares well with other possible estimators such as two-stage least-squares (2SLS) and two-stage least-absolute-deviations (2SLAD), asymptotically and in finite samples. It is notably interesting to deal with contamination affecting more heavily the distribution tails than a few outliers and not losing as much efficiency as other popular estimators in that case, e.g. under normality. An additional originality resides in the fact that we deal with random regressors and asymmetric errors, which is not often the case in the literature on robust estimators.  相似文献   

12.
Bivariate extreme value theory was used to estimate a rare event (see de Haan and de Ronde [1998. Sea and wind: multivariate extremes at work. Extremes 1, 7–45]). This procedure involves estimating a tail dependence function. There are several estimators for the tail dependence function in the literature, but their limiting distributions depend on partial derivatives of the tail dependence function. In this paper smooth estimators are proposed for estimating partial derivatives of bivariate tail dependence functions and their asymptotic distributions are derived as well. A simulation study is conducted to compare different estimators of partial derivatives in terms of both mean squared errors and coverage accuracy of confidence intervals of the bivariate tail dependence function based on these different estimators of partial derivatives.  相似文献   

13.
J. Kleffe 《Statistics》2013,47(2):233-250
The subject of this contribution is to present a survey on new methods for variance component estimation, which appeared in the literature in recent years. Starting from mixed models treated in analysis of variance research work on this field turned over to a more general approach in which the covariance matrix of the vector of observations is assumed to be a unknown linear combination of known symmetric matrices. Much interest has been shown in developing some kinds op optimal estimators for the unknown parameters and most results were obtained for estimators being invariant with respect to a certain group of translations. Therefore we restrict attention to this class of estimates. We will deal with minimum variance unbiased estimators, least squared errors estimators, maximum likelihood estimators. Bayes quadratic estimators and show some relations to the mimimum norm quadratic unbiased estimation principle (MINQUE) introduced by C. R. Rao [20]. We do not mention the original motivation of MINQUE since the otion of minimum norm depends on a measure that is not accepted by all statisticians. Also we do‘nt deal with other approaches like the BAYEsian and fiducial methods which were successfully applied by S. Portnoy [18], P. Rusolph [22], G. C. Tiao, W. Y. Tan [28], M. J. K. Healy [9] and others, although in very special situations, only. Additionally we add some new results and also new insight in the properties of known estimators. We give a new characterization of MINQUE in the class of all estimators, extend explicite expressions for locally optimal quadratic estimators given by C. R. Rao [22] to a slightly more general situation and prove complete class theorems useful for the computation of BAYES quadratic estimators. We also investigate situations in which BAYES quadratic unbiased estimators do'nt change if the distribution of the error terms differ from the normal distribution.  相似文献   

14.
In this paper the family ofφ-divergence estimators for loglinear models with linear constraints and multinomial sampling is studied. This family is an extension of the maximum likelihood estimator studied by Haber and Brown (1986). A simulation study is presented and some alternative estimators to the maximum likelihood are obtained. This work was parcially supported by Grant DGES PB2003-892  相似文献   

15.
It is shown that Strawderman's [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190–198] technique for estimating the variance of a normal distribution can be extended to estimating a general scale parameter in the presence of a nuisance parameter. Employing standard monotone likelihood ratio-type conditions, a new class of improved estimators for this scale parameter is derived under quadratic loss. By imposing an additional condition, a broader class of improved estimators is obtained. The dominating procedures are in form analogous to those in Strawderman [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190–198]. Application of the general results to the exponential distribution yields new sufficient conditions, other than those of Brewster and Zidek [1974. Improving on equivariant estimators. Ann. Statist. 2, 21–38] and Kubokawa [1994. A unified approach to improving equivariant estimators. Ann. Statist. 22, 290–299], for improving the best affine equivariant estimator of the scale parameter. A class of estimators satisfying the new conditions is constructed. The results shed new light on Strawderman's [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190–198] technique.  相似文献   

16.
This paper studies the estimation in the proportional odds model based on randomly truncated data. The proposed estimators for the regression coefficients include a class of minimum distance estimators defined through weighted empirical odds function. We have investigated the asymptotic properties like the consistency and the limiting distribution of the proposed estimators under mild conditions. The finite sample properties were investigated through simulation study making comparison of some of the estimators in the class. We conclude with an illustration of our proposed method to a well-known AIDS data.  相似文献   

17.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error.  相似文献   

18.
A. Baccini  M. Fekri  J. Fine 《Statistics》2013,47(4):267-300
Different sorts of bilinear models (models with bilinear interaction terms) are currently used when analyzing contingency tables: association models, correlation models... All these can be included in a general family of bilinear models: power models. In this framework, Maximum Likelihood (ML) estimation is not always possible, as explained in an introductory example. Thus, Generalized Least Squares (GLS) estimation is sometimes needed in order to estimate parameters. A subclass of power models is then considered in this paper: separable reduced-rank (SRR) models. They allow an optimal choice of weights for GLS estimation and simplifications in asymptotic studies concerning GLS estimators. Power 2 models belong to the subclass of SRR models and the asymptotic properties of GLS estimators are established. Similar results are also established for association models which are not SRR models. However, these results are more difficult to prove. Finally, 2 examples are considered to illustrate our results.  相似文献   

19.
It is frequently the case that a response will be related to both a vector of finite length and a function-valued random variable as predictor variables. In this paper, we propose new estimators for the parameters of a partial functional linear model which explores the relationship between a scalar response variable and mixed-type predictors. Asymptotic properties of the proposed estimators are established and finite sample behavior is studied through a small simulation experiment.  相似文献   

20.
This paper concerns a method of estimation of variance components in a random effect linear model. It is mainly a resampling method and relies on the Jackknife principle. The derived estimators are presented as least squares estimators in an appropriate linear model, and one of them appears as a MINQUE (Minimum Norm Quadratic Unbiased Estimation) estimator. Our resampling method is illustrated by an example given by C. R. Rao [7] and some optimal properties of our estimator are derived for this example. In the last part, this method is used to derive an estimation of variance components in a random effect linear model when one of the components is assumed to be known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号