首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper presents a new criterion for selecting a two-level fractional factorial design. The theoretical underpinning for the criterion is the Shannon entropy. The criterion, which is referred to as the entropy-based minimum aberration criterion, has several advantages. The advantage of the entropy-based criterion over the classical minimum aberration criterion is that it utilizes a measure of uncertainty on the skewness of the distribution of word length patterns in the selection of the “best” design in a family of two-level fractional factorial plans. The criterion evades the trauma associated with the lack of prior knowledge on the important effects.  相似文献   

2.
The problem of selecting exponential populations better than a control under a simple ordering prior is investigated. Based on some prior information, it is appropriate to set lower bounds for the concerned parameters. The information about the lower bounds of the concerned parameters is taken into account to derive isotonic selection rules for the control known case. An isotonic selection rule for the control unknown case is also proposed. A criterion is proposed to evaluate the performance of the selection rules. Simulation comparisons among the performances of several selection rules are carried out. The simulation results indicate that for the control known case, the new proposed selection rules perform better than some earlier existing selection rules.  相似文献   

3.
An important aspect of paired comparison experiments is the decision of how to form pairs in advance of collecting data. A weakness of typical paired comparison experimental designs is the difficulty in incorporating prior information, which can be particularly relevant for the design of tournament schedules for players of games and sports. Pairing methods that make use of prior information are often ad hoc algorithms with little or no formal basis. The problem of pairing objects can be formalized as a Bayesian optimal design. Assuming a linear paired comparison model for outcomes, we develop a pairing method that maximizes the expected gain in Kullback–Leibler information from the prior to the posterior distribution. The optimal pairing is determined using a combinatorial optimization method commonly used in graph-theoretic contexts. We discuss the properties of our optimal pairing criterion, and demonstrate our method as an adaptive procedure for pairing objects multiple times. We compare the performance of our method on simulated data against random pairings, and against a system that is currently in use in tournament chess.  相似文献   

4.
Some Bayesian approaches to D -optimum design of experiments are considered from the viewpoint of invariance under reparameterization of the underlying statistical model. An invariant criterion is proposed which does not require the detailed specification of a prior, and which is shown to be equivalent to G -optimality under a Jeffreys prior. The methods are applied and discussed in the contexts of exponential decay and quantal response models.  相似文献   

5.
A maximum estimability (maxest) criterion is proposed for design classification and selection. It is an extension and refinement of Webb's resolution criterion for general factorial designs. By using the estimability vector associated with the maxest criterion, projective properties of nonregular designs are studied from the estimability perspective. Comparisons with other criteria are also discussed.  相似文献   

6.
A Bayesian approach is presented for model selection in nonparametric regression with Gaussian errors and in binary nonparametric regression. A smoothness prior is assumed for each component of the model and the posterior probabilities of the candidate models are approximated using the Bayesian information criterion. We study the model selection method by simulation and show that it has excellent frequentist properties and gives improved estimates of the regression surface. All the computations are carried out efficiently using the Gibbs sampler.  相似文献   

7.
The presence of block effects makes the optimal selection of fractional factorial designs a difficult task. The existing frequentist methods try to combine treatment and block wordlength patterns and apply minimum aberration criterion to find the optimal design. However, ambiguities exist in combining the two wordlength patterns and therefore, the optimality of such designs can be challenged. Here we propose a Bayesian approach to overcome this problem. The main technique is to postulate a model and a prior distribution to satisfy the common assumptions in blocking and then, to develop an optimal design criterion for the efficient estimation of treatment effects. We apply our method to develop regular, nonregular, and mixed-level blocked designs. Several examples are presented to illustrate the advantages of the proposed method.  相似文献   

8.
To explore the projection efficiency of a design, Tsai, et al [2000. Projective three-level main effects designs robust to model uncertainty. Biometrika 87, 467–475] introduced the Q criterion to compare three-level main-effects designs for quantitative factors that allow the consideration of interactions in addition to main effects. In this paper, we extend their method and focus on the case in which experimenters have some prior knowledge, in advance of running the experiment, about the probabilities of effects being non-negligible. A criterion which incorporates experimenters’ prior beliefs about the importance of each effect is introduced to compare orthogonal, or nearly orthogonal, main effects designs with robustness to interactions as a secondary consideration. We show that this criterion, exploiting prior information about model uncertainty, can lead to more appropriate designs reflecting experimenters’ prior beliefs.  相似文献   

9.
When Shannon entropy is used as a criterion in the optimal design of experiments, advantage can be taken of the classical identity representing the joint entropy of parameters and observations as the sum of the marginal entropy of the observations and the preposterior conditional entropy of the parameters. Following previous work in which this idea was used in spatial sampling, the method is applied to standard parameterized Bayesian optimal experimental design. Under suitable conditions, which include non-linear as well as linear regression models, it is shown in a few steps that maximizing the marginal entropy of the sample is equivalent to minimizing the preposterior entropy, the usual Bayesian criterion, thus avoiding the use of conditional distributions. It is shown using this marginal formulation that under normality assumptions every standard model which has a two-point prior distribution on the parameters gives an optimal design supported on a single point. Other results include a new asymptotic formula which applies as the error variance is large and bounds on support size.  相似文献   

10.
Many empirical studies are planned with the prior knowledge that some of the data may be missed. This knowledge is seldom explicitly incorporated into the experiment design process for lack of a candid methodology. This paper proposes an index related to the expected determinant of the information matrix as a criterion for planning block designs. Due to the intractable nature of the expected determinantal criterion an analytic expression is presented only for a simple 2x2 layout. A first order Taylor series approximation function is suggested for larger layouts. Ranges over which this approximation is adequate are shown via Monte Carlo simulations. The robustness of information in the block design relative to the completely randomized design with missing data is discussed.  相似文献   

11.
In the context of nonlinear regression models, we propose an optimal experimental design criterion for estimating the parameters that account for the intrinsic and parameter-effects nonlinearity. The optimal design criterion proposed in this article minimizes the determinant of the mean squared error matrix of the parameter estimator that is quadratically approximated using the curvature array. The design criterion reduces to the D-optimal design criterion if there are no intrinsic and parameter-effects nonlinearity in the model, and depends on the scale parameter estimator and on the reparameterization used. Some examples, using a well known nonlinear kinetics model, demonstrate the application of the proposed criterion to nonsequential design of experiments as compared with the D-optimal criterion.  相似文献   

12.
This paper considers the problem of optimal design for inference in Generalized Linear Models, when prior information about the parameters is available. The general theory of optimum design usually requires knowledge of the parameter values. These are usually unknown and optimal design can, therefore, not be used in practice. However, one way to circumvent this problem is through so-called “optimal design in average”, or shortly, “ave optimal”. The ave optimal design is chosen to minimize the expected value of some criterion function over a prior distribution. We focus our interest on the aveD A-optimality, including aveD- and avec-optimality and show the appropriate equivalence theorems for these optimality criterions, which give necessary conditions for an optimal design. Ave optimal designs are of interest when e.g. a factorial experiment with a binary or a Poisson response in to be conducted. The results are applied to factorial experiments, including a control group experiment and a 2×2 experiment.  相似文献   

13.
In this article the problem of the optimal selection and allocation of time points in repeated measures experiments is considered. D‐ optimal designs for linear regression models with a random intercept and first order auto‐regressive serial correlations are computed numerically and compared with designs having equally spaced time points. When the order of the polynomial is known and the serial correlations are not too small, the comparison shows that for any fixed number of repeated measures, a design with equally spaced time points is almost as efficient as the D‐ optimal design. When, however, there is no prior knowledge about the order of the underlying polynomial, the best choice in terms of efficiency is a D‐ optimal design for the highest possible relevant order of the polynomial. A design with equally‐spaced time points is the second best choice  相似文献   

14.

This work is motivated by the need to find experimental designs which are robust under different model assumptions. We measure robustness by calculating a measure of design efficiency with respect to a design optimality criterion and say that a design is robust if it is reasonably efficient under different model scenarios. We discuss two design criteria and an algorithm which can be used to obtain robust designs. The first criterion employs a Bayesian-type approach by putting a prior or weight on each candidate model and possibly priors on the corresponding model parameters. We define the first criterion as the expected value of the design efficiency over the priors. The second design criterion we study is the minimax design which minimizes the worst value of a design criterion over all candidate models. We establish conditions when these two criteria are equivalent when there are two candidate models. We apply our findings to the area of accelerated life testing and perform sensitivity analysis of designs with respect to priors and misspecification of planning values.  相似文献   

15.
In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large-sample and the high-dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.  相似文献   

16.
Inference for a generalized linear model is generally performed using asymptotic approximations for the bias and the covariance matrix of the parameter estimators. For small experiments, these approximations can be poor and result in estimators with considerable bias. We investigate the properties of designs for small experiments when the response is described by a simple logistic regression model and parameter estimators are to be obtained by the maximum penalized likelihood method of Firth [Firth, D., 1993, Bias reduction of maximum likelihood estimates. Biometrika, 80, 27–38]. Although this method achieves a reduction in bias, we illustrate that the remaining bias may be substantial for small experiments, and propose minimization of the integrated mean square error, based on Firth's estimates, as a suitable criterion for design selection. This approach is used to find locally optimal designs for two support points.  相似文献   

17.
Model selection is the most persuasive problem in generalized linear models. A model selection criterion based on deviance called the deviance-based criterion (DBC) is proposed. The DBC is obtained by penalizing the difference between the deviance of the fitted model and the full model. Under certain weak conditions, DBC is shown to be a consistent model selection criterion in the sense that with probability approaching to one, the selected model asymptotically equals the optimal model relating response and predictors. Further, the use of DBC in link function selection is also discussed. We compare the proposed model selection criterion with existing methods. The small sample efficiency of proposed model selection criterion is evaluated by the simulation study.  相似文献   

18.
A maximin criterion is used to find optimal designs for the logistic random intercept model with dichotomous independent variables. The dichotomous independent variables can be subdivided into variables for which the distribution is specified prior to data sampling, called variates, and into variables for which the distribution is not specified prior to data sampling, but is obtained from data sampling, called covariates. The proposed maximin criterion maximizes the smallest possible relative efficiency not only with respect to all possible values of the model parameters, but also with respect to the joint distribution of the covariates. We have shown that, under certain conditions, the maximin design is balanced with respect to the joint distribution of the variates. The proposed method will be used to plan a (stratified) clinical trial where variates and covariates are involved.  相似文献   

19.
Abstract

In the model selection problem, the consistency of the selection criterion has been often discussed. This paper derives a family of criteria based on a robust statistical divergence family by using a generalized Bayesian procedure. The proposed family can achieve both consistency and robustness at the same time since it has good performance with respect to contamination by outliers under appropriate circumstances. We show the selection accuracy of the proposed criterion family compared with the conventional methods through numerical experiments.  相似文献   

20.
ABSTRACT

Nowadays, generalized linear models have many applications. Some of these models which have more applications in the real world are the models with random effects; that is, some of the unknown parameters are considered random variables. In this article, this situation is considered in logistic regression models with a random intercept having exponential distribution. The aim is to obtain the Bayesian D-optimal design; thus, the method is to maximize the Bayesian D-optimal criterion. For the model was considered here, this criterion is a function of the quasi-information matrix that depends on the unknown parameters of the model. In the Bayesian D-optimal criterion, the expectation is acquired in respect of the prior distributions that are considered for the unknown parameters. Thus, it will only be a function of experimental settings (support points) and their weights. The prior distribution of the fixed parameters is considered uniform and normal. The Bayesian D-optimal design is finally calculated numerically by R3.1.1 software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号