首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Empirical likelihood based variable selection   总被引:1,自引:0,他引:1  
Information criteria form an important class of model/variable selection methods in statistical analysis. Parametric likelihood is a crucial part of these methods. In some applications such as the generalized linear models, the models are only specified by a set of estimating functions. To overcome the non-availability of well defined likelihood function, the information criteria under empirical likelihood are introduced. Under this setup, we successfully solve the existence problem of the profile empirical likelihood due to the over constraint in variable selection problems. The asymptotic properties of the new method are investigated. The new method is shown to be consistent at selecting the variables under mild conditions. Simulation studies find that the proposed method has comparable performance to the parametric information criteria when a suitable parametric model is available, and is superior when the parametric model assumption is violated. A real data set is also used to illustrate the usefulness of the new method.  相似文献   

2.
The pretest–posttest design is widely used to investigate the effect of an experimental treatment in biomedical research. The treatment effect may be assessed using analysis of variance (ANOVA) or analysis of covariance (ANCOVA). The normality assumption for parametric ANOVA and ANCOVA may be violated due to outliers and skewness of data. Nonparametric methods, robust statistics, and data transformation may be used to address the nonnormality issue. However, there is no simultaneous comparison for the four statistical approaches in terms of empirical type I error probability and statistical power. We studied 13 ANOVA and ANCOVA models based on parametric approach, rank and normal score-based nonparametric approach, Huber M-estimation, and Box–Cox transformation using normal data with and without outliers and lognormal data. We found that ANCOVA models preserve the nominal significance level better and are more powerful than their ANOVA counterparts when the dependent variable and covariate are correlated. Huber M-estimation is the most liberal method. Nonparametric ANCOVA, especially ANCOVA based on normal score transformation, preserves the nominal significance level, has good statistical power, and is robust for data distribution.  相似文献   

3.
In randomized clinical trials, a treatment effect on a time-to-event endpoint is often estimated by the Cox proportional hazards model. The maximum partial likelihood estimator does not make sense if the proportional hazard assumption is violated. Xu and O'Quigley (Biostatistics 1:423-439, 2000) proposed an estimating equation, which provides an interpretable estimator for the treatment effect under model misspecification. Namely it provides a consistent estimator for the log-hazard ratio among the treatment groups if the model is correctly specified, and it is interpreted as an average log-hazard ratio over time even if misspecified. However, the method requires the assumption that censoring is independent of treatment group, which is more restricted than that for the maximum partial likelihood estimator and is often violated in practice. In this paper, we propose an alternative estimating equation. Our method provides an estimator of the same property as that of Xu and O'Quigley under the usual assumption for the maximum partial likelihood estimation. We show that our estimator is consistent and asymptotically normal, and derive a consistent estimator of the asymptotic variance. If the proportional hazards assumption holds, the efficiency of the estimator can be improved by applying the covariate adjustment method based on the semiparametric theory proposed by Lu and Tsiatis (Biometrika 95:679-694, 2008).  相似文献   

4.
During their follow-up, patients with cancer can experience several types of recurrent events and can also die. Over the last decades, several joint models have been proposed to deal with recurrent events with dependent terminal event. Most of them require the proportional hazard assumption. In the case of long follow-up, this assumption could be violated. We propose a joint frailty model for two types of recurrent events and a dependent terminal event to account for potential dependencies between events with potentially time-varying coefficients. For that, regression splines are used to model the time-varying coefficients. Baseline hazard functions (BHF) are estimated with piecewise constant functions or with cubic M-Splines functions. The maximum likelihood estimation method provides parameter estimates. Likelihood ratio tests are performed to test the time dependency and the statistical association of the covariates. This model was driven by breast cancer data where the maximum follow-up was close to 20 years.  相似文献   

5.
A new covariance matrix estimator is proposed under the assumption that at every time period all pairwise correlations are equal. This assumption, which is pragmatically applied in various areas of finance, makes it possible to estimate arbitrarily large covariance matrices with ease. The model, called DECO, involves first adjusting for individual volatilities and then estimating correlations. A quasi-maximum likelihood result shows that DECO provides consistent parameter estimates even when the equicorrelation assumption is violated. We demonstrate how to generalize DECO to block equicorrelation structures. DECO estimates for U.S. stock return data show that (block) equicorrelated models can provide a better fit of the data than DCC. Using out-of-sample forecasts, DECO and Block DECO are shown to improve portfolio selection compared to an unrestricted dynamic correlation structure.  相似文献   

6.
The recurrent-event setting, where the subjects experience multiple occurrences of the event of interest, are encountered in many biomedical applications. In analyzing recurrent event data, non informative censoring is often assumed for the implementation of statistical methods. However, when a terminating event such as death serves as part of the censoring mechanism, validity of the censoring assumption may be violated because recurrence can be a powerful risk factor for death. We consider joint modeling of recurrent event process and terminating event under a Bayesian framework in which a shared frailty is used to model the association between the intensity of the recurrent event process and the hazard of the terminating event. Our proposed model is implemented on data from a well-known cancer study.  相似文献   

7.
Control charts have been popularly used as a user-friendly yet technically sophisticated tool to monitor whether a process is in statistical control or not. These charts are basically constructed under the normality assumption. But in many practical situations in real life this normality assumption may be violated. One such non-normal situation is to monitor the process variability from a skewed parent distribution where we propose the use of a Maxwell control chart. We introduce a pivotal quantity for the scale parameter of the Maxwell distribution which follows a gamma distribution. Probability limits and L-sigma limits are studied along with performance measure based on average run length and power curve. To avoid the complexity of future calculations for practitioners, factors for constructing control chart for monitoring the Maxwell parameter are given for different sample sizes and for different false alarm rate. We also provide simulated data to illustrate the Maxwell control chart. Finally, a real life example has been given to show the importance of such a control chart.  相似文献   

8.
9.
The multiple longitudinal outcomes collected in many clinical trials are often analyzed by multilevel item response theory (MLIRT) models. The normality assumption for the continuous outcomes in the MLIRT models can be violated due to skewness and/or outliers. Moreover, patients’ follow-up may be stopped by some terminal events (e.g., death or dropout), which are dependent on the multiple longitudinal outcomes. We proposed a joint modeling framework based on the MLIRT model to account for three data features: skewness, outliers, and dependent censoring. Our method development was motivated by a clinical study for Parkinson’s disease.  相似文献   

10.
For statistical inference on regression models with a diverging number of covariates, the existing literature typically makes sparsity assumptions on the inverse of the Fisher information matrix. Such assumptions, however, are often violated under Cox proportion hazards models, leading to biased estimates with under-coverage confidence intervals. We propose a modified debiased lasso method, which solves a series of quadratic programming problems to approximate the inverse information matrix without posing sparse matrix assumptions. We establish asymptotic results for the estimated regression coefficients when the dimension of covariates diverges with the sample size. As demonstrated by extensive simulations, our proposed method provides consistent estimates and confidence intervals with nominal coverage probabilities. The utility of the method is further demonstrated by assessing the effects of genetic markers on patients' overall survival with the Boston Lung Cancer Survival Cohort, a large-scale epidemiology study investigating mechanisms underlying the lung cancer.  相似文献   

11.
Abstract

Augmented mixed beta regression models are suitable choices for modeling continuous response variables on the closed interval [0, 1]. The random eeceeects in these models are typically assumed to be normally distributed, but this assumption is frequently violated in some applied studies. In this paper, an augmented mixed beta regression model with skew-normal independent distribution for random effects are used. Next, we adopt a Bayesian approach for parameter estimation using the MCMC algorithm. The methods are then evaluated using some intensive simulation studies. Finally, the proposed models have applied to analyze a dataset from an Iranian Labor Force Survey.  相似文献   

12.
Yuan Ying Zhao 《Statistics》2015,49(6):1348-1365
Various mixed models were developed to capture the features of between- and within-individual variation for longitudinal data under the normality assumption of the random effect and the within-individual random error. However, the normality assumption may be violated in some applications. To this end, this article assumes that the random effect follows a skew-normal distribution and the within-individual error is distributed as a reproductive dispersion model. An expectation conditional maximization (ECME) algorithm together with the Metropolis-Hastings (MH) algorithm within the Gibbs sampler is presented to simultaneously obtain estimates of parameters and random effects. Several diagnostic measures are developed to identify the potentially influential cases and assess the effect of minor perturbation to model assumptions via the case-deletion method and local influence analysis. To reduce the computational burden, we derive the first-order approximations to case-deletion diagnostics. Several simulation studies and a real data example are presented to illustrate the newly developed methodologies.  相似文献   

13.
Doubly adaptive biased coin design (DBCD) is an important family of response-adaptive randomization procedures for clinical trials. It uses sequentially updated estimation to skew the allocation probability to favor the treatment that has performed better thus far. An important assumption for the DBCD is the homogeneity assumption for the patient responses. However, this assumption may be violated in many sequential experiments. Here we prove the robustness of the DBCD against certain time trends in patient responses. Strong consistency and asymptotic normality of the design are obtained under some widely satisfied conditions. Also, we propose a general weighted likelihood method to reduce the bias caused by the heterogeneity in the inference after a trial. Some numerical studies are also presented to illustrate the finite sample properties of DBCD.  相似文献   

14.
We propose and study by means of simulations and graphical tools a class of goodness-of-fit tests for ARCH models. The tests are based on the empirical distribution function of squared residuals and smooth (parametric) bootstrap. We examine empirical size and power by means of a simulation study. While the tests have overall correct size, their power strongly depends on the type of alternative and is particularly high when the assumption of Gaussian innovations is violated. As an example, the tests are applied to returns on Foreign Exchange rates.  相似文献   

15.
In recent years, statistical profile monitoring has emerged as a relatively new and potentially useful subarea of statistical process control and has attracted attention of many researchers and practitioners. A profile, waveform, or signature is a function that relates a dependent or a response variable to one or more independent variables. Different statistical methods have been proposed by researchers to monitor profiles where each method requires its own assumptions. One of the common and implicit assumptions in most of the proposed procedures is the assumption of independent residuals. Violation of this assumption can affect the performance of control procedures and ultimately leading to misleading results. In this article, we study phase II analysis of monitoring multivariate simple linear profiles when the independency assumption is violated. Three time series based methods are proposed to eliminate the effect of correlation that exists between multivariate profiles. Performances of the proposed methods are evaluated using average run length (ARL) criterion. Numerical results indicate satisfactory performance for the proposed methods. A simulated example is also used to show the application of the proposed methods.  相似文献   

16.
The case-cohort study design is widely used to reduce cost when collecting expensive covariates in large cohort studies with survival or competing risks outcomes. A case-cohort study dataset consists of two parts: (a) a random sample and (b) all cases or failures from a specific cause of interest. Clinicians often assess covariate effects on competing risks outcomes. The proportional subdistribution hazards model directly evaluates the effect of a covariate on the cumulative incidence function under the non-covariate-dependent censoring assumption for the full cohort study. However, the non-covariate-dependent censoring assumption is often violated in many biomedical studies. In this article, we propose a proportional subdistribution hazards model for case-cohort studies with stratified data with covariate-adjusted censoring weight. We further propose an efficient estimator when extra information from the other causes is available under case-cohort studies. The proposed estimators are shown to be consistent and asymptotically normal. Simulation studies show (a) the proposed estimator is unbiased when the censoring distribution depends on covariates and (b) the proposed efficient estimator gains estimation efficiency when using extra information from the other causes. We analyze a bone marrow transplant dataset and a coronary heart disease dataset using the proposed method.  相似文献   

17.
Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the non-parametric multivariate Kruskal–Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete case analyses.  相似文献   

18.
In the usual credibility model, observations are made of a risk or group of risks selected from a population, and claims are assumed to be independent among different risks. However, there are some problems in practical applications and this assumption may be violated in some situations. Some credibility models allow for one source of claim dependence only, that is, across time for an individual insured risk or a group of homogeneous insured risks. Some other credibility models have been developed on a two-level common effects model that allows for two possible sources of dependence, namely, across time for the same individual risk and between risks. In this paper, we argue for the notion of modeling claim dependence on a three-level common effects model that allows for three possible sources of dependence, namely, across portfolios, across individuals and simultaneously across time within individuals. We also obtain the corresponding credibility premiums hierarchically using the projection method. Then we derive the general hierarchical structure or multi-level credibility premiums for the models with h-level of common effects.  相似文献   

19.
The average run length (ARL) of conventional control charts is typically computed assuming temporal independence. However, this assumption is frequently violated in practical applications. Alternative ARL computations have often been conducted via time consuming and yet not necessarily very accurate simulations. In this article, we develop a class of Markov chain models for evaluating the run length performance of traditional control charts for autocorrelated processes. We show extensions from the univariate AR(1) model to the general multivariate VARMA(p, q) time series. The results of the proposed method are highly comparable to those of simulations and with significantly less computational overhead.  相似文献   

20.
Testing the equality of two survival distributions can be difficult in a prevalent cohort study when non random sampling of subjects is involved. Due to the biased sampling scheme, independent censoring assumption is often violated. Although the issues about biased inference caused by length-biased sampling have been widely recognized in statistical, epidemiological and economical literature, there is no satisfactory solution for efficient two-sample testing. We propose an asymptotic most efficient nonparametric test by properly adjusting for length-biased sampling. The test statistic is derived from a full likelihood function, and can be generalized from the two-sample test to a k-sample test. The asymptotic properties of the test statistic under the null hypothesis are derived using its asymptotic independent and identically distributed representation. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test statistics and compare them with the conditional test and the standard logrank test for different biased sampling schemes and right-censoring mechanisms. For length-biased data, empirical studies demonstrated that the proposed test is substantially more powerful than the existing methods. For general left-truncated data, the proposed test is robust, still maintains accurate control of type I error rate, and is also more powerful than the existing methods, if the truncation patterns and right-censoring patterns are the same between the groups. We illustrate the methods using two real data examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号