首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《统计学通讯:理论与方法》2012,41(13-14):2321-2341
For the case where at least two sets have an odd number of variables we do not have the exact distribution of the generalized Wilks Lambda statistic in a manageable form, adequate for manipulation. In this article, we develop a family of very accurate near-exact distributions for this statistic for the case where two or three sets have an odd number of variables. We first express the exact characteristic function of the logarithm of the statistic in the form of the characteristic function of an infinite mixture of Generalized Integer Gamma distributions. Then, based on truncations of this exact characteristic function, we obtain a family of near-exact distributions, which, by construction, match the first two exact moments. These near-exact distributions display an asymptotic behaviour for increasing number of variables involved. The corresponding cumulative distribution functions are obtained in a concise and manageable form, relatively easy to implement computationally, allowing for the computation of virtually exact quantiles. We undertake a comparative study for small sample sizes, using two proximity measures based on the Berry-Esseen bounds, to assess the performance of the near-exact distributions for different numbers of sets of variables and different numbers of variables in each set.  相似文献   

2.
In this paper we.present a Normal asymptotic distribution for the logarithm of the generalized Wilks Lambda statistic based on an asymptotic distribution for the determinant of a Wishart matrix. This distribution is obtained through the combined use of Taylor expansions of random variables whose exponentials have chi-square distributions and the Lindeberg-Feller version of the Central Limit Theorem, Another asymptotic Normal distribution for the logarithm of the generalized Wilks Lambda statistic for the case when at most one of the sets has an odd number of variables is derived directly from the exact distribution. Both distributions are non-degenerate and non-singular. The first Normal distribution compares favorably with other known approximations and asymptotic distributions namely for large numbers of variables and small sample sizes, while the second Normal distribution, which has a more restricted application, compares in most cases highly favorably with other known asymptotic distributions and approximations. Finally, a method to compute approximate quantiles which lay very close and converge steadily to the exact ones is presented.  相似文献   

3.
In this paper three near-exact distributions are developed for the sphericity test statistic. The exact probability density function of this statistic is usually represented through the use of the Meijer G function, which renders the computation of quantiles impossible even for a moderately large number of variables. The main purpose of this paper is to obtain near-exact distributions that lie closer to the exact distribution than the asymptotic distributions while, at the same time, correspond to density and cumulative distribution functions practical to use, allowing for an easy determination of quantiles. In addition to this, two asymptotic distributions that lie closer to the exact distribution than the existing ones were developed. Two measures are considered to evaluate the proximity between the exact and the asymptotic and near-exact distributions developed. As a reference we use the saddlepoint approximations developed by Butler et al. [1993. Saddlepoint approximations for tests of block independence, sphericity and equal variances and covariances. J. Roy. Statist. Soc., Ser. B 55, 171–183] as well as the asymptotic distribution proposed by Box.  相似文献   

4.
Using the concept of near-exact approximation to a distribution we developed two different near-exact approximations to the distribution of the product of an odd number of particular independent Beta random variables (r.v.'s). One of them is a particular generalized near-integer Gamma (GNIG) distribution and the other is a mixture of two GNIG distributions. These near-exact distributions are mostly adequate to be used as a basis for approximations of distributions of several statistics used in multivariate analysis. By factoring the characteristic function (c.f.) of the logarithm of the product of the Beta r.v.'s, and then replacing a suitably chosen factor of that c.f. by an adequate asymptotic result it is possible to obtain what we call a near-exact c.f., which gives rise to the near-exact approximation to the exact distribution. Depending on the asymptotic result used to replace the chosen parts of the c.f., one may obtain different near-exact approximations. Moments from the two near-exact approximations developed are compared with the exact ones. The two approximations are also compared with each other, namely in terms of moments and quantiles.  相似文献   

5.
In this article the authors show how by adequately decomposing the null hypothesis of the multi-sample block-scalar sphericity test it is possible to obtain the likelihood ratio test statistic as well as a different look over its exact distribution. This enables the construction of well-performing near-exact approximations for the distribution of the test statistic, whose exact distribution is quite elaborate and non-manageable. The near-exact distributions obtained are manageable and perform much better than the available asymptotic distributions, even for small sample sizes, and they show a good asymptotic behavior for increasing sample sizes as well as for increasing number of variables and/or populations involved.  相似文献   

6.
In this article, the authors first obtain the exact distribution of the logarithm of the product of independent generalized Gamma r.v.’s (random variables) in the form of a Generalized Integer Gamma distribution of infinite depth, where all the rate and shape parameters are well identified. Then, by a routine transformation, simple and manageable expressions for the exact distribution of the product of independent generalized Gamma r.v.’s are derived. The method used also enables us to obtain quite easily very accurate, manageable and simple near-exact distributions in the form of Generalized Near-Integer Gamma distributions. Numerical studies are carried out to assess the precision of different approximations to the exact distribution and they show the high accuracy of the approximations provided by the near-exact distributions. As particular cases of the exact distributions obtained we have the distribution of the product of independent Gamma, Weibull, Frechet, Maxwell-Boltzman, Half-Normal, Rayleigh, and Exponential distributions, as well as the exact distribution of the generalized variance, the exact distribution of discriminants or Vandermonde determinants and the exact distribution of any linear combination of generalized Gumbel distributions, as well as yet the distribution of the product of any power of the absolute value of independent Normal r.v.’s.  相似文献   

7.
For testing separate families of hypotheses, the likelihood ratio test does not have the usual asymptotic properties. This paper considers the asymptotic distribution of the ratio of maximized likelihoods (RML) statistic in the special case of testing separate scale or location-scale families of distributions. We derive saddlepoint approximations to the density and tail probabilities of the log of the RML statistic. These approximations are based on the expansion of the log of the RML statistic up to the second order, which is shown not to depend on the location and scale parameters. The resulting approximations are applied in several cases, including normal versus Laplace, normal versus Cauchy, and Weibull versus log-normal. Our results show that the saddlepoint approximations are satisfactory, even for fairly small sample sizes, and are more accurate than normal approximations and Edgeworth approximations, especially for tail probabilities that are the values of main interest in hypothesis testing problems.  相似文献   

8.
The classical adjustments for the inadequacy of the asymptotic distribution of Pearson's X2 statistic, when some cells are sparse or the cell expectations are small, use continuity corrections and exact moments; the recent approach is to use computer based ‘exact inference’. In this paper we observe that the original exact test due to Freeman and Halton (Biometrika 38 (1951), 141–149) and its computer implementation are theoretically unsound. Furthermore, the corrected algorithmic version for the exact p-value in StatXact is practically useful in very few cases, and the results of its present version which includes Monte Carlo estimates can be highly variable. We then derive asymptotic expansions for the moments of the null distribution of Pearson's X2, introduce a new method of correcting for discreteness and finite range of Pearson's X2 as an alternative to the classical continuity correction, and use them to construct new and improved approximations for the null distribution. We also offer diagnostic criteria applicable to the tables for selecting an appropriate approximation. The exact methods and the competing approximations are studied and compared using thirteen test cases from the literature. It is concluded that the accuracy of the appropriate approximation is comparable with the truly exact method whenever it is available. The use of approximations is therefore preferable if the truly exact computer intensive solutions are unavailable or infeasible.  相似文献   

9.
In this paper ve obtain an asymptotic expression for the upper tail area of the distribution of an infinite weighted sum of chi-square random variables and show how this can be applied to distributions of various goodness of fit test statistics. Results obtained by this general approach are comparable with those reported previously in the literature. In the case of the Cramer-von Mises statistic an empirical adjustment is given vhich significantly improves on previous approximations. For the Kuiper statistic the corresponding empirical adjustment leads to an existing highly accurate approximation.  相似文献   

10.
ABSTRACT

In practice, it is often not possible to find an appropriate family of distributions which can be used for fitting the sample distribution with high precision. In these cases, it seems to be opportune to search for the best approximation by a family of distributions instead of an exact fit. In this paper, we consider the Anderson–Darling statistic with plugged-in minimum distance estimator for the parameter vector. We prove asymptotic normality of the Anderson–Darling statistic which is used for a test of goodness of approximation. Moreover, we introduce a measure of discrepancy between the sample distribution and the model class.  相似文献   

11.
We study the asymptotic behavior of the weighted sum of correlated chi-squared random variables. Both chi-squared and normal distributions are proved to approximate the exact distribution. These two approximations are established by matching the first two cumulants. Simulation comparison is made to study the performance of two approximations numerically. We find that the chi-squared approximation performs better than the normal one in the study.  相似文献   

12.
This paper contains an application of the asymptotic expansion of a pFp() function to a problem encountered in econometrics. In particular we consider an approximation of the distribution function of the limited information maximum likelihood (LIML) identifiability test statistic using the method of moments. An expression for the Sth order asymptotic approximation of the moments of the LIML identifiability test statistic is derived and tabulated. The exact distribution function of the test statistic is approximated by a member of the class of F (variance ratio) distribution functions having the same first two integer moments. Some tabulations of the approximating distribution function are included.  相似文献   

13.
Several approximations to the exact distribution of the Kruskal-Wallis test' statistic presently exist. There approximations can roughly be grouped into two classes: (i) computationally difficult with good accuracy, and (ii) easy to compute but not as accurate as the first class. The purpose of this paper is to introduce two nev approximations (one in the latter class and one which is computationally more involved)y and to compare these with other popular approximations. These comparisons use exact probabilities where available and Monte Carlo simulation otherwise.  相似文献   

14.
An accurate procedure is proposed to calculate approximate moments of progressive order statistics in the context of statistical inference for lifetime models. The study analyses the performance of power series expansion to approximate the moments for location and scale distributions with high precision and smaller deviations with respect to the exact values. A comparative analysis between exact and approximate methods is shown using some tables and figures. The different approximations are applied in two situations. First, we consider the problem of computing the large sample variance–covariance matrix of maximum likelihood estimators. We also use the approximations to obtain progressively censored sampling plans for log-normal distributed data. These problems illustrate that the presented procedure is highly useful to compute the moments with precision for numerous censoring patterns and, in many cases, is the only valid method because the exact calculation may not be applicable.  相似文献   

15.
In this paper, an exact distribution of the likelihood ratio criterion for testing the equality of p two-parameter exponential distributions is obtained for unequal sample sizes in a computational form. A useful asymptotic expansion of the distribution is also obtained up to the order of n-4 with the second term of the order of n-3 and so can be used to obtain accurate approximations to the critical values of the test statistic even for comparatively small values of n where n is the combined sample size. In fact the first term alone which is a single beta distribution provides a powerful approximation for moderately large values of n.  相似文献   

16.
A rule of thumb for testing symmetry of an unknown univariate continuous distribution against the alternative of a long right tail is proposed. Our proposed test is based on the concept of exceedance statistic and is ad hoc in nature. Exact performances of the proposed rule are investigated in detail. Some results from an asymptotic point of view are also provided. We compare our proposed test with several classical tests which are practically applicable and are known to be exact or nearly distribution free. We see that the proposed rule is better than most of the existing tests for symmetry and can be applied with ease. An illustration with real data is provided.  相似文献   

17.
Severe departures from normality occur frequently for null distributions of statistics associated with applications of mulLi-response permutation procedures (MRPP) for either small or large finite populations. This paper describes the commonly encountered situation associated with asymptotic non-normality for null distributions of MRPP statistics which does not depend on the underlying multivariate distribution. In addition, this paper establishes the existence of a non-degenerate underlying distribution for which the null distributions of MRPP statistics are asymptotically non-normal for essentially all size structure configurations. It is known that MRPP statistics are symmetric versions of a broader class of statistics, most of which are asymmetric. Because of the non-normality associated with null distributions of MRPP statistics, this paper includes necessary results for inferences based on the exact first three moments of anv statistic in this broader class (analogous to existing results for MRPP statistics).  相似文献   

18.
This paper considers the problem of testing the randomness of Gaussian and non–Gaussian time series. A general class of parametric portmanteau statistics, which include the Box–Pierce and the Ljung–Box statistics, is introduced. Using the exact first and second moments of the sample autocorrelations when the observations are i.i.d. normal with unknown mean, the exact expected value of any portmanteau statistics is obtained for this case. Two new portmanteau statistics, which exploit the exact moments of the sample autocorrelations, are studied. For the nonparametric case, a rank portmanteau statistic is introduced. The latter has the same distribution for any series of exchangeable random variables and uses the exact moments of the rank autocorrelations. We show that its asymptotic distribution is chi–squate. Simulation results indicate that the new portmanteau statistics are better approximated by the chi–square asymptotic distribution than the Ljung–Box statistics. Several analytical results presented in the paper were derived by usig a symbolic manipulation program.  相似文献   

19.
In most hierarchical Bayes cases the posterior distributions are difficult to derive and cannot be obtained in closed form. In some special cases, however, it is possible to obtain the exact moments of the posterior distributions.

By applying these moments and Pearson curves or Cornish-Fisher expansions to real problems, good approximations of the exact posterior distributions of individual parameter values as well as linear combinations of parameter values could easily be obtained.  相似文献   

20.
A study of the distribution of a statistic involves two major steps: (a) working out its asymptotic, large n, distribution, and (b) making the connection between the asymptotic results and the distribution of the statistic for the sample sizes used in practice. This crucial second step is not included in many studies. In this article, the second step is applied to Durbin's (1951) well-known rank test of treatment effects in balanced incomplete block designs (BIB's). We found that asymptotic, χ2, distributions do not provide adequate approximations in most BIB's. Consequently, we feel that several of Durbin's recommendations should be altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号