首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over thresholds. In this article, we establish the asymptotic normality of the well-known extreme quantile estimators based on this POT method, under very general assumptions. As an illustration, from this result, we deduce the asymptotic normality of the POT extreme quantile estimators in the case where the maximum likelihood (ML) or the generalized probability-weighted moments (GPWM) methods are used. Simulations are provided in order to compare the efficiency of these estimators based on ML or GPWM methods with classical ones proposed in the literature.  相似文献   

2.
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000).  相似文献   

3.
Modelling excesses over a high threshold using the Pareto or generalized Pareto distribution (PD/GPD) is the most popular approach in extreme value statistics. This method typically requires high thresholds in order for the (G)PD to fit well and in such a case applies only to a small upper fraction of the data. The extension of the (G)PD proposed in this paper is able to describe the excess distribution for lower thresholds in case of heavy-tailed distributions. This yields a statistical model that can be fitted to a larger portion of the data. Moreover, estimates of tail parameters display stability for a larger range of thresholds. Our findings are supported by asymptotic results, simulations and a case study.  相似文献   

4.
A common approach to modelling extreme data are to consider the distribution of the exceedance value over a high threshold. This approach is based on the distribution of excess, which follows the generalized Pareto distribution (GPD) and has shown to be adequate for this type of situation. As with all data involving analysis in time, excesses above a threshold may also vary and suffer from the influence of covariates. Thus, the GPD distribution can be modelled by entering the presence of these factors. This paper presents a new model for extreme values, where GPD parameters are written on the basis of a dynamic regression model. The estimation of the model parameters is made under the Bayesian paradigm, with sampling points via MCMC. As with environmental data, behaviour data are related to other factors such as time and covariates such as latitude and distance from the sea. Simulation studies have shown the efficiency and identifiability of the model, and applying real rain data from the state of Piaui, Brazil, shows the advantage in predicting and interpreting the model against other similar models proposed in the literature.  相似文献   

5.
ABSTRACT

In this article, we derive exact explicit expressions for the single, double, triple, and quadruple moments of order statistics from the generalized Pareto distribution (GPD). Also, we obtain the best linear unbiased estimates of the location and scale parameters (BLUE's) of the GPD. We then use these results to determine the mean, variance, and coefficients of skewness and kurtosis of certain linear functions of order statistics. These are then utilized to develop approximate confidence intervals for the generalized Pareto parameters using Edgeworth approximation and compare them with those based on Monte Carlo simulations. To show the usefulness of our results, we also present a numerical example. Finally, we give an application to real data.  相似文献   

6.
In recent years, several attempts have been made to characterize the generalized Pareto distribution (GPD) based on the properties of order statistics and record values. In the present article, we give a characterization result on GPD based on the spacing of generalized order statistics.  相似文献   

7.
In this article, we take a brief overview of different functional forms of generalized Poisson distribution (GPD) and various methods of its parameter estimation found in the literature. We compare the method of moment estimation (ME) and maximum likelihood estimation (MLE) of parameters of GPD through simulation study in terms of bias, MSE and covariance. To simulate random numbers from GPD, we develop a Matlab function gpoissrnd(). The simulation study leads to the important conclusion that the ME performs better or equally good as compared to MLE when sample size is small.

Further we fit the GPD to various datasets in literature using both estimation methods and observe that the results do not differ significantly even though the sample size is large. Overall, we conclude that for GPD, use of ME in place of MLE will lead to almost similar results. The computational simplicity in calculation of ME as compared to MLE also gives support to the use of ME in case of GPD for practitioners.  相似文献   


8.
We present a methodology for computing the point and interval maximum likelihood parameter estimation for the two-parameter generalized Pareto distribution (GPD) with censored data. The basic idea underlying our method is a reduction of the two-dimensional numerical search for the zeros of the GPD log-likelihood gradient vector to a one-dimensional numerical search. We describe a computationally efficient algorithm which implement this approach. Two illustrative examples are presented. Simulation results indicate that the estimates derived by maximum likelihood estimation are more reliable against those of method of moments. An evaluation of the practical sample size requirements for the asymptotic normality is also included.  相似文献   

9.
The generalized Pareto distribution (GPD) has been widely used to model exceedances over a threshold. This article generalizes the method of generalized probability weighted moments, and applies this method to estimate the parameters of GPD. The estimator is computationally easy. Some asymptotic results of this method are provided. Two simulations are carried out to investigate the behavior of this method and to compare them with other methods suggested in the literature. The simulation results show that the performance of the proposed method is better than some other methods. Finally, this method is applied to analyze a real-life data.  相似文献   

10.
ABSTRACT

The generalized Pareto distribution (GPD) is important in the analysis of extreme values, especially in modeling exceedances over thresholds. Most of the existing methods for estimating the scale and shape parameters of the GPD suffer from theoretical and/or computational problems. A new hybrid estimation method is proposed in this article, which minimizes a goodness-of-fit measure and incorporates some useful likelihood information. Compared with the maximum likelihood method and other leading methods, our new hybrid estimation method retains high efficiency, reduces the estimation bias, and is computation friendly.  相似文献   

11.
ABSTRACT

The generalized Pareto distribution (GPD) is commonly used as extreme values's distribution. We present goodness of fit tests for the GPD based on Neyman's smooth tests statistics. The methods of maximum likelihood, moments and probability-weighted moments are used for estimating the GPD's parameters. Simulations are done to study the power of these tests.  相似文献   

12.
In recent years, several attempts have been made to characterize the generalized Pareto distributions (GPD) based on the properties of order statistics and record values. In the present article, we give some characterization results on GPD based on order statistics and generalized order statistics. Some characterizations of uniform distribution based on expectation of some functions of order statistics are also given.  相似文献   

13.
In many applications (geosciences, insurance, etc.), the peaks-over-thresholds (POT) approach is one of the most widely used methodology for extreme quantile inference. It mainly consists of approximating the distribution of exceedances above a high threshold by a generalized Pareto distribution (GPD). The number of exceedances which is used in the POT inference is often quite small and this leads typically to a high volatility of the estimates. Inspired by perfect sampling techniques used in simulation studies, we define a folding procedure that connects the lower and upper parts of a distribution. A new extreme quantile estimator motivated by this theoretical folding scheme is proposed and studied. Although the asymptotic behaviour of our new estimate is the same as the classical (non-folded) one, our folding procedure reduces significantly the mean squared error of the extreme quantile estimates for small and moderate samples. This is illustrated in the simulation study. We also apply our method to an insurance dataset.  相似文献   

14.
Parameter estimation of the generalized Pareto distribution—Part II   总被引:1,自引:0,他引:1  
This is the second part of a paper which focuses on reviewing methods for estimating the parameters of the generalized Pareto distribution (GPD). The GPD is a very important distribution in the extreme value context. It is commonly used for modeling the observations that exceed very high thresholds. The ultimate success of the GPD in applications evidently depends on the parameter estimation process. Quite a few methods exist in the literature for estimating the GPD parameters. Estimation procedures, such as the maximum likelihood (ML), the method of moments (MOM) and the probability weighted moments (PWM) method were described in Part I of the paper. We shall continue to review methods for estimating the GPD parameters, in particular methods that are robust and procedures that use the Bayesian methodology. As in Part I, we shall focus on those that are relatively simple and straightforward to be applied to real world data.  相似文献   

15.
作为巴塞尔新资本协议规定的七种操作风险损失类型之一,内部欺诈问题是中国商业银行的一个重大风险来源。以部分国内商业银行内部欺诈数据为样本,针对内部欺诈具有的低频率高损失的特点,借助广义Pareto分布(GPD)和对数正态分布对内部欺诈建立了一个风险度量模型,然后通过对尾部分布何时服从GPD进行检验,得到了精确的门限值,最后利用所建立的分布模型对内部欺诈类操作风险在险风险值、经济资本和最大可能损失进行了估计,说明了中国商业银行防范内部欺诈风险的重要性。  相似文献   

16.
A generalization of the Poisson distribution was defined by Consul and Jain (Ann. Math. Statist., 41, (1970)) and was obtained as a particular family of Lagrange distributions by Consul and Shenton (SIAM. J. Appl. Math., 23, (1972)). The distribution is subsequently named the generalized Poisson distribution (GPD). This GPD reduces to the Poisson distribution for ? = 0. When the data have a one-way layout structure, the asymptotically locally optimal Neyman's C(d) test is constructed and compared with the conditional test on the hypothesis Ho? = 0. Within the framework of the generalized linear models an appropriate link function is given, and the asymptotic distributions of the estimated parameters are derived.  相似文献   

17.
The parameters and quantiles of the three-parameter generalized Pareto distribution (GPD3) were estimated using six methods for Monte Carlo generated samples. The parameter estimators were the moment estimator and its two variants, probability-weighted moment estimator, maximum likelihood estimator, and entropy estimator. Parameters were investigated using a factorial experiment. The performance of these estimators was statistically compared, with the objective of identifying the most robust estimator from amongst them.  相似文献   

18.
A discrete probability model always gets truncated during the sampling process and the point of truncation depends upon the sample size. Also, the generalized Poisson distribution cannot be used with full justification when the second parameter is negative. To avoid these problems a truncated generalized Poisson distribution is defined and studied. Estimation of its parameters by moments method, maximum likelihood method and a mixed method are considered. Some examples are given to illustrate the effect on the parameters’ estimates when a non-truncated GPD is used instead of a truncated GPD.  相似文献   

19.
The generalized Pareto distribution (GPD) has been widely used in the extreme value framework. The success of the GPD when applied to real data sets depends substantially on the parameter estimation process. Several methods exist in the literature for estimating the GPD parameters. Mostly, the estimation is performed by maximum likelihood (ML). Alternatively, the probability weighted moments (PWM) and the method of moments (MOM) are often used, especially when the sample sizes are small. Although these three approaches are the most common and quite useful in many situations, their extensive use is also due to the lack of knowledge about other estimation methods. Actually, many other methods, besides the ones mentioned above, exist in the extreme value and hydrological literatures and as such are not widely known to practitioners in other areas. This paper is the first one of two papers that aim to fill in this gap. We shall extensively review some of the methods used for estimating the GPD parameters, focusing on those that can be applied in practical situations in a quite simple and straightforward manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号