首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop criteria that generate robust designs and use such criteria for the construction of designs that insure against possible misspecifications in logistic regression models. The design criteria we propose are different from the classical in that we do not focus on sampling error alone. Instead we use design criteria that account as well for error due to bias engendered by the model misspecification. Our robust designs optimize the average of a function of the sampling error and bias error over a specified misspecification neighbourhood. Examples of robust designs for logistic models are presented, including a case study implementing the methodologies using beetle mortality data.  相似文献   

2.
This paper considers exponential and rational regression models that are nonlinear in some parameters. Recently, locally D-optimal designs for such models were investigated in [Melas, V. B., 2005. On the functional approach to optimal designs for nonlinear models. J. Statist. Plann. Inference 132, 93–116] based upon a functional approach. In this article a similar method is applied to construct maximin efficient D-optimal designs. This approach allows one to represent the support points of the designs by Taylor series, which gives us the opportunity to construct the designs by hand using tables of the coefficients of the series. Such tables are provided here for models with two nonlinear parameters. Furthermore, the recurrent formulas for constructing the tables for arbitrary numbers of parameters are introduced.  相似文献   

3.
The construction of experimental designs by recursive techniques is studied in this paper. Formulae for the recursive addition or deletion of data from a design are derived for a typical sub-hypothesis situation of a general experimental design. These results are used to consider the recursive construction of experimental designs with respect to different optimality criteria. This approach to the construction of designs is quite different to that of the well-established theory of optimal design.  相似文献   

4.
Many of the usual criteria for optimal experimental designs do not take into account the different scale of the variance of the parameters. Dette [1997. Designing experiments with respect to “standardized” optimality criteria. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 59(1), 97–110] provided a standardization based on the efficiencies for estimating each of the parameters. This approach provides designs with similar efficiencies for all of the parameters.  相似文献   

5.
In this article, we consider the problem of seeking locally optimal designs for nonlinear dose‐response models with binary outcomes. Applying the theory of Tchebycheff Systems and other algebraic tools, we show that the locally D‐, A‐, and c‐optimal designs for three binary dose‐response models are minimally supported in finite, closed design intervals. The methods to obtain such designs are presented along with examples. The efficiencies of these designs are also discussed. The Canadian Journal of Statistics 46: 336–354; 2018 © 2018 Statistical Society of Canada  相似文献   

6.
An experimental design is said to be Schur optimal, if it is optimal with respect to the class of all Schur isotonic criteria, which includes Kiefer's criteria of ΦpΦp-optimality, distance optimality criteria and many others. In the paper we formulate an easily verifiable necessary and sufficient condition for Schur optimality in the set of all approximate designs of a linear regression experiment with uncorrelated errors. We also show that several common models admit a Schur optimal design, for example the trigonometric model, the first-degree model on the Euclidean ball, and the Berman's model.  相似文献   

7.
Minimization of the maximum and average variance of the difference between estimated responses are taken as design criteria for univariate polynomial regression models. An optimal design under the first criterion is derived for the second-order model and a class of designs nearly optimal under the second criterion is obtained for the general polynomial models.  相似文献   

8.
We consider a general class of mixed models, where the individual parameter vector is composed of a linear function of the population parameter vector plus an individual random effects vector. The linear function can vary for the different individuals. We show that the search for optimal designs for the estimation of the population parameter vector can be restricted to the class of group-wise identical designs, i.e., for each of the groups defined by the different linear functions only one individual elementary design has to be optimized. A way to apply the result to non-linear mixed models is described.  相似文献   

9.
This paper considers optimal parametric designs, i.e. designs represented by probability measures determined by a set of parameters, for nonlinear models and illustrates their use in designs for pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) trials. For some practical problems, such as designs for modelling PK/PD relationship, this is often the only feasible type of design, as the design points follow a PK model and cannot be directly controlled. Even for ordinary design problems the parametric designs have some advantages over the traditional designs, which often have too few design points for model checking and may not be robust to model and parameter misspecifications. We first describe methods and algorithms to construct the parametric design for ordinary nonlinear design problems and show that the parametric designs are robust to parameter misspecification and have good power for model discrimination. Then we extend this design method to construct optimal repeated measurement designs for nonlinear mixed models. We also use this parametric design for modelling a PK/PD relationship and propose a simulation based algorithm. The application of parametric designs is illustrated with a three-parameter open one-compartment PK model for the ordinary design and repeated measurement design, and an Emax model for the phamacokinetic/pharmacodynamic trial design.  相似文献   

10.
The present article establishes equivalence between extended group divisible (EGD) designs and designs for crop sequence experiments. This equivalence has encouraged the agricultural experimenters to use EGD designs for their experimentation. Some real life applications of EGD designs have been given. It has also been shown that several existing association schemes are special cases of EGD association scheme. Some methods of construction of EGD designs are also given. A catalogue of EGD designs obtainable through methods of construction along with efficiency factors of various factorial effects is also presented. In some crop sequence experiments that are conducted to develop suitable integrated nutrient supply system of a crop sequence, the treatments do not comprise of a complete factorial structure. The experimenter is interested in estimating the residual and direct effect of the treatments along with their cumulative effects. For such experimental settings block designs with two sets of treatments applied in succession are the appropriate designs. The correspondence established between row–column designs and block designs for two stage experiments by Parsad et al. [2003. Structurally incomplete row–column designs. Comm. Statist. Theory Methods 32(1), 239–261] has been exploited in obtaining designs for such experimental situations. Some open problems related to designing of crop sequence experiments are also given.  相似文献   

11.
For the problem of percentile estimation of a quantal response curve, the authors determine multiobjective designs which are robust with respect to misspecifications of the model assumptions. They propose a maximin approach based on efficiencies which leads to designs that are simultaneously efficient with respect to various choices of link functions and parameter regions. Furthermore, the authors deal with the problems of designing model and percentile robust experiments. They give various examples of such designs, which are calculated numerically.  相似文献   

12.
J. Gladitz  J. Pilz 《Statistics》2013,47(3):371-385
We consider the problem of optimal experimental design in random coefficient regression models with respect to a quadratic loss function. By application of WHITTLE'S general equivalence theorem we obtain the structure of optimal designs. An alogrithm is given which allows, under certain assumptions, the construction of the information matrix of an optimal design. Moreover, we give conditions on the equivalence of optimal designs with respect to optimality criteria which are analogous to usual A-D- and _E/-optimality.  相似文献   

13.
In this paper we present the construction of robust designs for a possibly misspecified generalized linear regression model when the data are censored. The minimax designs and unbiased designs are found for maximum likelihood estimation in the context of both prediction and extrapolation problems. This paper extends preceding work of robust designs for complete data by incorporating censoring and maximum likelihood estimation. It also broadens former work of robust designs for censored data from others by considering both nonlinearity and much more arbitrary uncertainty in the fitted regression response and by dropping all restrictions on the structure of the regressors. Solutions are derived by a nonsmooth optimization technique analytically and given in full generality. A typical example in accelerated life testing is also demonstrated. We also investigate implementation schemes which are utilized to approximate a robust design having a density. Some exact designs are obtained using an optimal implementation scheme.  相似文献   

14.
The Zernike polynomials arise in several applications such as optical metrology or image analysis on a circular domain. In the present paper, we determine optimal designs for regression models which are represented by expansions in terms of Zernike polynomials. We consider two estimation methods for the coefficients in these models and determine the corresponding optimal designs. The first one is the classical least squares method and Φ p -optimal designs in the sense of Kiefer [Kiefer, J., 1974, General equivalence theory for optimum designs (approximate theory). Annals of Statistics, 2 849–879.] are derived, which minimize an appropriate functional of the covariance matrix of the least squares estimator. It is demonstrated that optimal designs with respect to Kiefer's Φ p -criteria (p>?∞) are essentially unique and concentrate observations on certain circles in the experimental domain. E-optimal designs have the same structure but it is shown in several examples that these optimal designs are not necessarily uniquely determined. The second method is based on the direct estimation of the Fourier coefficients in the expansion of the expected response in terms of Zernike polynomials and optimal designs minimizing the trace of the covariance matrix of the corresponding estimator are determined. The designs are also compared with the uniform designs on a grid, which is commonly used in this context.  相似文献   

15.
We study minimax robust designs for response prediction and extrapolation in biased linear regression models. We extend previous work of others by considering a nonlinear fitted regression response, by taking a rather general extrapolation space and, most significantly, by dropping all restrictions on the structure of the regressors. Several examples are discussed.  相似文献   

16.
The purpose of this article is to present the optimal designs based on D-, G-, A-, I-, and D β-optimality criteria for random coefficient regression (RCR) models with heteroscedastic errors. A sufficient condition for the heteroscedastic structure is given to make sure that the search of optimal designs can be confined at extreme settings of the design region when the criteria satisfy the assumption of the real valued monotone design criteria. Analytical solutions of D-, G-, A-, I-, and D β-optimal designs for the RCR models are derived. Two examples are presented for random slope models with specific heteroscedastic errors.  相似文献   

17.
We propose to discuss at length several examples from standard text books. All of these examples deal with analysis of covariance (ANCOVA) models and related analyses of data. We intend to capitalize on our understanding of optimal covariate designs (OCDs) in different ANCOVA models and re-visit these examples with a view to suggest optimal/nearly optimal designs for estimation of the covariate parameter(s). As we will see, for some examples our task is very much routine but for others, it is indeed a highly non trivial exercise.

?We intent to cover a total of six examples—divided in two parts. This is Part I—dealing with two examples.  相似文献   

18.
A. Žilinskasi 《Statistics》2013,47(2):255-266
A new approach for the construction of statistical models for multimodal optimization is proposed; the examples of such models are given. The results of the psychological experiment show that the proposed approach is intuitively acceptable.  相似文献   

19.
The D‐optimal minimax criterion is proposed to construct fractional factorial designs. The resulting designs are very efficient, and robust against misspecification of the effects in the linear model. The criterion was first proposed by Wilmut & Zhou (2011); their work is limited to two‐level factorial designs, however. In this paper we extend this criterion to designs with factors having any levels (including mixed levels) and explore several important properties of this criterion. Theoretical results are obtained for construction of fractional factorial designs in general. This minimax criterion is not only scale invariant, but also invariant under level permutations. Moreover, it can be applied to any run size. This is an advantage over some other existing criteria. The Canadian Journal of Statistics 41: 325–340; 2013 © 2013 Statistical Society of Canada  相似文献   

20.
The use of covariates in block designs is necessary when the covariates cannot be controlled like the blocking factor in the experiment. In this paper, we consider the situation where there is some flexibility for selection in the values of the covariates. The choice of values of the covariates for a given block design attaining minimum variance for estimation of each of the parameters has attracted attention in recent times. Optimum covariate designs in simple set-ups such as completely randomised design (CRD), randomised block design (RBD) and some series of balanced incomplete block design (BIBD) have already been considered. In this paper, optimum covariate designs have been considered for the more complex set-ups of different partially balanced incomplete block (PBIB) designs, which are popular among practitioners. The optimum covariate designs depend much on the methods of construction of the basic PBIB designs. Different combinatorial arrangements and tools such as orthogonal arrays, Hadamard matrices and different kinds of products of matrices viz. Khatri–Rao product, Kronecker product have been conveniently used to construct optimum covariate designs with as many covariates as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号