首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social network data represent the interactions between a group of social actors. Interactions between colleagues and friendship networks are typical examples of such data.The latent space model for social network data locates each actor in a network in a latent (social) space and models the probability of an interaction between two actors as a function of their locations. The latent position cluster model extends the latent space model to deal with network data in which clusters of actors exist — actor locations are drawn from a finite mixture model, each component of which represents a cluster of actors.A mixture of experts model builds on the structure of a mixture model by taking account of both observations and associated covariates when modeling a heterogeneous population. Herein, a mixture of experts extension of the latent position cluster model is developed. The mixture of experts framework allows covariates to enter the latent position cluster model in a number of ways, yielding different model interpretations.Estimates of the model parameters are derived in a Bayesian framework using a Markov Chain Monte Carlo algorithm. The algorithm is generally computationally expensive — surrogate proposal distributions which shadow the target distributions are derived, reducing the computational burden.The methodology is demonstrated through an illustrative example detailing relationships between a group of lawyers in the USA.  相似文献   

2.
Summary.  The paper demonstrates application of the latent Markov model for assessing developments by individuals through stages of a process. This approach is applied by using a database on ownership of 12 financial products and various demographic variables. The latent Markov model derives latent classes, representing household product portfolios, and shows the relationship between class membership and household demographics. The analysis provides insight into switching between the latent classes, reflecting developments of individual household product portfolios, and the effects of demographics on such switches. Based on this, we formulate equations to predict future acquisitions of financial products. The model accurately predicts which product a specific household unit acquires next, for most of the products.  相似文献   

3.
We propose a class of state-space models for multivariate longitudinal data where the components of the response vector may have different distributions. The approach is based on the class of Tweedie exponential dispersion models, which accommodates a wide variety of discrete, continuous and mixed data. The latent process is assumed to be a Markov process, and the observations are conditionally independent given the latent process, over time as well as over the components of the response vector. This provides a fully parametric alternative to the quasilikelihood approach of Liang and Zeger. We estimate the regression parameters for time-varying covariates entering either via the observation model or via the latent process, based on an estimating equation derived from the Kalman smoother. We also consider analysis of residuals from both the observation model and the latent process.  相似文献   

4.
In this paper, we propose a hidden Markov model for the analysis of the time series of bivariate circular observations, by assuming that the data are sampled from bivariate circular densities, whose parameters are driven by the evolution of a latent Markov chain. The model segments the data by accounting for redundancies due to correlations along time and across variables. A computationally feasible expectation maximization (EM) algorithm is provided for the maximum likelihood estimation of the model from incomplete data, by treating the missing values and the states of the latent chain as two different sources of incomplete information. Importance-sampling methods facilitate the computation of bootstrap standard errors of the estimates. The methodology is illustrated on a bivariate time series of wind and wave directions and compared with popular segmentation models for bivariate circular data, which ignore correlations across variables and/or along time.  相似文献   

5.
We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMMs). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study to jointly model questionnaire-based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.  相似文献   

6.
A latent Markov model for detecting patterns of criminal activity   总被引:1,自引:0,他引:1  
Summary.  The paper investigates the problem of determining patterns of criminal behaviour from official criminal histories, concentrating on the variety and type of offending convictions. The analysis is carried out on the basis of a multivariate latent Markov model which allows for discrete covariates affecting the initial and the transition probabilities of the latent process. We also show some simplifications which reduce the number of parameters substantially; we include a Rasch-like parameterization of the conditional distribution of the response variables given the latent process and a constraint of partial homogeneity of the latent Markov chain. For the maximum likelihood estimation of the model we outline an EM algorithm based on recursions known in the hidden Markov literature, which make the estimation feasible also when the number of time occasions is large. Through this model, we analyse the conviction histories of a cohort of offenders who were born in England and Wales in 1953. The final model identifies five latent classes and specifies common transition probabilities for males and females between 5-year age periods, but with different initial probabilities.  相似文献   

7.
This paper conducts simulation-based comparison of several stochastic volatility models with leverage effects. Two new variants of asymmetric stochastic volatility models, which are subject to a logarithmic transformation on the squared asset returns, are proposed. The leverage effect is introduced into the model through correlation either between the innovations of the observation equation and the latent process, or between the logarithm of squared asset returns and the latent process. Suitable Markov Chain Monte Carlo algorithms are developed for parameter estimation and model comparison. Simulation results show that our proposed formulation of the leverage effect and the accompanying inference methods give rise to reasonable parameter estimates. Applications to two data sets uncover a negative correlation (which can be interpreted as a leverage effect) between the observed returns and volatilities, and a negative correlation between the logarithm of squared returns and volatilities.  相似文献   

8.
We study sequential Bayesian inference in stochastic kinetic models with latent factors. Assuming continuous observation of all the reactions, our focus is on joint inference of the unknown reaction rates and the dynamic latent states, modeled as a hidden Markov factor. Using insights from nonlinear filtering of continuous-time jump Markov processes we develop a novel sequential Monte Carlo algorithm for this purpose. Our approach applies the ideas of particle learning to minimize particle degeneracy and exploit the analytical jump Markov structure. A motivating application of our methods is modeling of seasonal infectious disease outbreaks represented through a compartmental epidemic model. We demonstrate inference in such models with several numerical illustrations and also discuss predictive analysis of epidemic countermeasures using sequential Bayes estimates.  相似文献   

9.
This article introduces a parsimonious structure for mixture of autoregressive models, where the weighting coefficients are determined through latent random variables, as functions of all past observations. These latent variables follow a Markov model. We propose a dynamic programming algorithm for forecasting, which reduces the volume of calculations. We also derive limiting behavior of unconditional first moment of the process and an appropriate upper bound for the limiting value of the variance. Further more, we show convergence and stability of the second moment. Finally, we illustrate the efficacy of the proposed model by simulation.  相似文献   

10.
In this article, we utilize a scale mixture of Gaussian random field as a tool for modeling spatial ordered categorical data with non-Gaussian latent variables. In fact, we assume a categorical random field is created by truncating a Gaussian Log-Gaussian latent variable model to accommodate heavy tails. Since the traditional likelihood approach for the considered model involves high-dimensional integrations which are computationally intensive, the maximum likelihood estimates are obtained using a stochastic approximation expectation–maximization algorithm. For this purpose, Markov chain Monte Carlo methods are employed to draw from the posterior distribution of latent variables. A numerical example illustrates the methodology.  相似文献   

11.
Block clustering with collapsed latent block models   总被引:1,自引:0,他引:1  
We introduce a Bayesian extension of the latent block model for model-based block clustering of data matrices. Our approach considers a block model where block parameters may be integrated out. The result is a posterior defined over the number of clusters in rows and columns and cluster memberships. The number of row and column clusters need not be known in advance as these are sampled along with cluster memberhips using Markov chain Monte Carlo. This differs from existing work on latent block models, where the number of clusters is assumed known or is chosen using some information criteria. We analyze both simulated and real data to validate the technique.  相似文献   

12.
This paper develops Bayesian inference of extreme value models with a flexible time-dependent latent structure. The generalized extreme value distribution is utilized to incorporate state variables that follow an autoregressive moving average (ARMA) process with Gumbel-distributed innovations. The time-dependent extreme value distribution is combined with heavy-tailed error terms. An efficient Markov chain Monte Carlo algorithm is proposed using a state-space representation with a finite mixture of normal distributions to approximate the Gumbel distribution. The methodology is illustrated by simulated data and two different sets of real data. Monthly minima of daily returns of stock price index, and monthly maxima of hourly electricity demand are fit to the proposed model and used for model comparison. Estimation results show the usefulness of the proposed model and methodology, and provide evidence that the latent autoregressive process and heavy-tailed errors play an important role to describe the monthly series of minimum stock returns and maximum electricity demand.  相似文献   

13.
ABSTRACT

In this article we introduce a new missing data model, based on a standard parametric Hidden Markov Model (HMM), for which information on the latent Markov chain is given since this one reaches a fixed state (and until it leaves this state). We study, under mild conditions, the consistency and asymptotic normality of the maximum likelihood estimator. We point out also that the underlying Markov chain does not need to be ergodic, and that identifiability of the model is not tractable in a simple way (unlike standard HMMs), but can be studied using various technical arguments.  相似文献   

14.
ABSTRACT

In this paper, we consider an effective Bayesian inference for censored Student-t linear regression model, which is a robust alternative to the usual censored Normal linear regression model. Based on the mixture representation of the Student-t distribution, we propose a non-iterative Bayesian sampling procedure to obtain independently and identically distributed samples approximately from the observed posterior distributions, which is different from the iterative Markov Chain Monte Carlo algorithm. We conduct model selection and influential analysis using the posterior samples to choose the best fitted model and to detect latent outliers. We illustrate the performance of the procedure through simulation studies, and finally, we apply the procedure to two real data sets, one is the insulation life data with right censoring and the other is the wage rates data with left censoring, and we get some interesting results.  相似文献   

15.
In this paper, we formulate a very flexible family of models which unifies most recent lifetime distributions. The main idea is to obtain a cumulative distribution function to transform the baseline distribution with an activation mechanism characterized by a latent threshold variable. The new family has a strong biological interpretation from the competitive risks point of view and the Box–Cox transformation provides an elegant manner to interpret the effect on the baseline distribution to obtain this alternative model. Several structural properties of the new model are investigated. A Bayesian analysis using Markov Chain Monte Carlo procedure is developed to illustrate with a real data the usefulness of the proposed family.  相似文献   

16.
Latent feature models are a powerful tool for modeling data with globally-shared features. Nonparametric distributions over exchangeable sets of features, such as the Indian Buffet Process, offer modeling flexibility by letting the number of latent features be unbounded. However, current models impose implicit distributions over the number of latent features per data point, and these implicit distributions may not match our knowledge about the data. In this work, we demonstrate how the restricted Indian buffet process circumvents this restriction, allowing arbitrary distributions over the number of features in an observation. We discuss several alternative constructions of the model and apply the insights to develop Markov Chain Monte Carlo and variational methods for simulation and posterior inference.  相似文献   

17.
The purpose of this paper is to develop a Bayesian approach for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes and presence of randomized activation mechanisms. We assume the number of competing causes of the event of interest follows a Negative Binomial (NB) distribution while the latent lifetimes are assumed to follow a Weibull distribution. Markov chain Monte Carlos (MCMC) methods are used to develop the Bayesian procedure. Model selection to compare the fitted models is discussed. Moreover, we develop case deletion influence diagnostics for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases. The developed procedures are illustrated with a real data set.  相似文献   

18.
The ordinal probit, univariate or multivariate, is a generalized linear model (GLM) structure that arises frequently in such disparate areas of statistical applications as medicine and econometrics. Despite the straightforwardness of its implementation using the Gibbs sampler, the ordinal probit may present challenges in obtaining satisfactory convergence.We present a multivariate Hastings-within-Gibbs update step for generating latent data and bin boundary parameters jointly, instead of individually from their respective full conditionals. When the latent data are parameters of interest, this algorithm substantially improves Gibbs sampler convergence for large datasets. We also discuss Monte Carlo Markov chain (MCMC) implementation of cumulative logit (proportional odds) and cumulative complementary log-log (proportional hazards) models with latent data.  相似文献   

19.
Bayesian inference for the superposition of nonhomogeneous Poisson processes is studied. A Markov-chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, a latent variable is introduced that indicates which component of the superposition model gives rise to the failure. This data-augmentation approach facilitates specification of the transitional kernel in the Markov chain. Moreover, new Bayesian tests are developed for the full superposition model against simpler submodels. Model determination by a predictive likelihood approach is studied. A numerical example based on a real data set is given.  相似文献   

20.
Aoristic data can be described by a marked point process in time in which the points cannot be observed directly but are known to lie in observable intervals, the marks. We consider Bayesian state estimation for the latent points when the marks are modeled in terms of an alternating renewal process in equilibrium and the prior is a Markov point process. We derive the posterior distribution, estimate its parameters and present some examples that illustrate the influence of the prior distribution. The model is then used to estimate times of occurrence of interval censored crimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号