首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adjusted empirical likelihood (AEL) is a method to improve the performance of the empirical likelihood (EL) particularly in the construction of the confidence interval based on completely observed data. In this paper, we extend AEL approach to the analysis of right censored data by adopting an influence function method. The main results include that the adjusted log-likelihood ratio is asymptotically Chi-squared distributed. Simulation results indicate that the proposed AEL-based confidence intervals perform better compared with normality-based or EL-based confidence intervals specifically for small sample size within the right-censoring setting. The proposed method is illustrated by analysis of survival time of patients after operation for spinal tumors.  相似文献   

2.
In this work, we consider empirical likelihood inference for general transformation models with right censored data. The models are a class of flexible semiparametric survival models and include many popular survival models as their special cases. Based on the marginal likelihood function, we define an empirical likelihood ratio statistic. Under some regularity conditions, we show that the empirical likelihood ratio statistic asymptotically follows a standard chi-squared distribution. Through some simulation studies and a real data application, we show that our proposed procedure can work fairly well even for relatively small sample size and high censoring.  相似文献   

3.
4.
To make efficient inference for mean of a response variable when the data are missing at random and the dimension of covariate is not low, we construct three bias-corrected empirical likelihood (EL) methods in conjunction with dimension-reduced kernel estimation of propensity or/and conditional mean response function. Consistency and asymptotic normality of the maximum dimension-reduced EL estimators are established. We further study the asymptotic properties of the resulting dimension-reduced EL ratio functions and the corresponding EL confidence intervals for the response mean are constructed. The finite-sample performance of the proposed estimators is studied through simulation, and an application to HIV-CD4 data set is also presented.  相似文献   

5.
Recently, it has been shown that empirical likelihood ratios can be used to form confidence intervals and test hypothesis just like the parametric case. We illustrate here the use of a particular kind of one-parameter sub-family of distributions in the analysis of empirical likelihood with censored data. This approach not only simplifies the theoretical analysis of the limiting behavior of the empirical likelihood ratio, it also gave us clues for the numerical search of constrained maxima of an empirical likelihood.  相似文献   

6.
ABSTRACT

This article considers inference for partial linear models with right censored data. We use empirical likelihood based on the Buckley and James (1979 Buckley, J., James, I. (1979). Linear regression with censored data. Biometrika 66:429436.[Crossref], [Web of Science ®] [Google Scholar]) estimating equation to derive the confidence region for the regression parameter. We introduce an adjusted empirical likelihood ratio statistic for the parameter of interest and show that its limiting distribution is standard chi-square. A simulation is carried out to compare our method with the synthetic data approach in Wang and Li (2002 Wang, Q.-H., Li, G. (2002). Empirical Likelihood Semiparametric Regression Analysis under Random Censorship. J. Multivariate Anal. 83:469486.[Crossref], [Web of Science ®] [Google Scholar]).  相似文献   

7.
Recently, exact inference under hybrid censoring scheme has attracted extensive attention in the field of reliability analysis. However, most of the authors neglect the possibility of competing risks model. This paper mainly discusses the exact likelihood inference for the analysis of generalized type-I hybrid censoring data with exponential competing failure model. Based on the maximum likelihood estimates for unknown parameters, we establish the exact conditional distribution of parameters by conditional moment generating function, and then obtain moment properties as well as exact confidence intervals (CIs) for parameters. Furthermore, approximate CIs are constructed by asymptotic distribution and bootstrap method as well. We also compare their performances with exact method through the use of Monte Carlo simulations. And finally, a real data set is analysed to illustrate the validity of all the methods developed here.  相似文献   

8.
Biao Zhang 《Statistics》2016,50(5):1173-1194
Missing covariate data occurs often in regression analysis. We study methods for estimating the regression coefficients in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866] on regression analyses with missing covariates, in which they pioneered the use of two working models, the working propensity score model and the working conditional score model. A recent approach to missing covariate data analysis is the empirical likelihood method of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503], which effectively combines unbiased estimating equations. In this paper, we consider an alternative likelihood approach based on the full likelihood of the observed data. This full likelihood-based method enables us to generate estimators for the vector of the regression coefficients that are (a) asymptotically equivalent to those of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the working propensity score model is correctly specified, and (b) doubly robust, like the augmented inverse probability weighting (AIPW) estimators of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Am Statist Assoc. 1994;89:846–866]. Thus, the proposed full likelihood-based estimators improve on the efficiency of the AIPW estimators when the working propensity score model is correct but the working conditional score model is possibly incorrect, and also improve on the empirical likelihood estimators of Qin, Zhang and Leung [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the reverse is true, that is, the working conditional score model is correct but the working propensity score model is possibly incorrect. In addition, we consider a regression method for estimation of the regression coefficients when the working conditional score model is correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866]. Finally, we compare the finite-sample performance of various estimators in a simulation study.  相似文献   

9.
We consider estimation and test problems for some semiparametric two-sample density ratio models. The profile empirical likelihood (EL) poses an irregularity problem under the null hypothesis that the laws of the two samples are equal. We show that a dual form of the profile EL is well defined even under the null hypothesis. A statistical test, based on the dual form of the EL ratio statistic (ELRS), is then proposed. We give an interpretation for the dual form of the ELRS through φφ-divergences and duality techniques. The asymptotic properties of the test statistic are presented both under the null and the alternative hypotheses, and approximation of the power function of the test is deduced.  相似文献   

10.
To construct confidence regions for the difference of two population means, Liu and Yu (2010 Liu, Y., Yu, C.W. (2010). Bartlett correctable two-sample adjusted empirical likelihood. J. Multivariate Anal. 101(7):17011711.[Crossref], [Web of Science ®] [Google Scholar]) proposed a two-sample adjusted empirical likelihood (AEL) with high-order precision. However, two issues have not been well addressed. The first one is that the AEL ratio function is bounded such that the size of the confidence regions may overly expand when the sample sizes are small and/or the dimension of data is large. The second issue is that its high-order precision relies on accurate estimation of the Bartlett factor, while accurately estimating the Bartlett factor is a serious challenge. In order to address these two problems simultaneously, we propose a two-sample modified AEL to ensure the boundedness of confidence regions and preserve the Bartlett correctability. A two-stage procedure is proposed for constructing accurate confidence regions via resampling. The finite-sample performance of the proposed method is illustrated by simulations and a real-data example.  相似文献   

11.
A functional-form empirical likelihood method is proposed as an alternative method to the empirical likelihood method. The proposed method has the same asymptotic properties as the empirical likelihood method but has more flexibility in choosing the weight construction. Because it enjoys the likelihood-based interpretation, the profile likelihood ratio test can easily be constructed with a chi-square limiting distribution. Some computational details are also discussed, and results from finite-sample simulation studies are presented.  相似文献   

12.
13.
We propose a weighted empirical likelihood approach to inference with multiple samples, including stratified sampling, the estimation of a common mean using several independent and non-homogeneous samples and inference on a particular population using other related samples. The weighting scheme and the basic result are motivated and established under stratified sampling. We show that the proposed method can ideally be applied to the common mean problem and problems with related samples. The proposed weighted approach not only provides a unified framework for inference with multiple samples, including two-sample problems, but also facilitates asymptotic derivations and computational methods. A bootstrap procedure is also proposed in conjunction with the weighted approach to provide better coverage probabilities for the weighted empirical likelihood ratio confidence intervals. Simulation studies show that the weighted empirical likelihood confidence intervals perform better than existing ones.  相似文献   

14.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

15.

Recently, exact confidence bounds and exact likelihood inference have been developed based on hybrid censored samples by Chen and Bhattacharyya [Chen, S. and Bhattacharyya, G.K. (1998). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in StatisticsTheory and Methods, 17, 1857–1870.], Childs et al. [Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319–330.], and Chandrasekar et al. [Chandrasekar, B., Childs, A. and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Research Logistics, 51, 994–1004.] for the case of the exponential distribution. In this article, we propose an unified hybrid censoring scheme (HCS) which includes many cases considered earlier as special cases. We then derive the exact distribution of the maximum likelihood estimator as well as exact confidence intervals for the mean of the exponential distribution under this general unified HCS. Finally, we present some examples to illustrate all the methods of inference developed here.  相似文献   

16.
The authors consider the empirical likelihood method for the regression model of mean quality‐adjusted lifetime with right censoring. They show that an empirical log‐likelihood ratio for the vector of the regression parameters is asymptotically a weighted sum of independent chi‐squared random variables. They adjust this empirical log‐likelihood ratio so that the limiting distribution is a standard chi‐square and construct corresponding confidence regions. Simulation studies lead them to conclude that empirical likelihood methods outperform the normal approximation methods in terms of coverage probability. They illustrate their methods with a data example from a breast cancer clinical trial study.  相似文献   

17.
Following the work of Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring. Comm Statist Theory Methods. 1988;17:1857–1870], several results have been developed regarding the exact likelihood inference of exponential parameters based on different forms of censored samples. In this paper, the conditional maximum likelihood estimators (MLEs) of two exponential mean parameters are derived under joint generalized Type-I hybrid censoring on the two samples. The moment generating functions (MGFs) and the exact densities of the conditional MLEs are obtained, using which exact confidence intervals are then developed for the model parameters. We also derive the means, variances, and mean squared errors of these estimates. An efficient computational method is developed based on the joint MGF. Finally, an example is presented to illustrate the methods of inference developed here.  相似文献   

18.
We propose a new procedure for combining multiple tests in samples of right-censored observations. The new method is based on multiple constrained censored empirical likelihood where the constraints are formulated as linear functionals of the cumulative hazard functions. We prove a version of Wilks’ theorem for the multiple constrained censored empirical likelihood ratio, which provides a simple reference distribution for the test statistic of our proposed method. A useful application of the proposed method is, for example, examining the survival experience of different populations by combining different weighted log-rank tests. Real data examples are given using the log-rank and Gehan-Wilcoxon tests. In a simulation study of two sample survival data, we compare the proposed method of combining tests to previously developed procedures. The results demonstrate that, in addition to its computational simplicity, the combined test performs comparably to, and in some situations more reliably than previously developed procedures. Statistical software is available in the R package ‘emplik’.  相似文献   

19.
In this article, the statistical inference for the Gompertz distribution based on Type-II progressively hybrid censored data is discussed. The estimation of the parameters for Gompertz distribution is obtained using maximum likelihood method (MLE) and Bayesian method under three different loss functions. We also proved the existence and uniqueness of the MLE. The one-sample Bayesian prediction intervals are obtained. The work is done for different values of the parameters. We apply the Monto Carlo simulation to compare the proposed methods, also an example is discussed to construct the Prediction intervals.  相似文献   

20.
In this paper, me shall investigate a bootstrap method hasd on a martingale representation of the relevant statistic for inference to a class of functionals of the survival distribution. The method is similar in spirit to Efron's (1981) bootstrap, and thus in the present paper will be referred to as “martingale-based bootstrap” The method was derived from Lin,Wei and Ying (1993), who appiied the method in checking the Cox model with cumulative sums of martingale-based residuals. It is shown that this martingale-based bootstrap gives a correct first-order asymptotic approximation to the distribution function of the corresponding functional of the Kaplan-Meier estimator. As a consequence, confidence intervals constructed by the martingale-based bootstrap have asymptotially correct coverage probability. Our simulation study indicats that the martingale-based bootst strap method for a small and moderate sample sizes can be uniformly better than the usual bootstrap method in estimating the sampling distribution for a mean function and a point probability in survival analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号