首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is already shown in Arnold and Stahlecker (2009) that, in linear regression, a uniformly best estimator exists in the class of all Γ-compatibleΓ-compatible linear affine estimators. Here, prior information is given by a fuzzy set ΓΓ defined by its ellipsoidal α-cutsα-cuts. Surprisingly, such a uniformly best linear affine estimator is uniformly best not only in the class of all Γ-compatibleΓ-compatible linear affine estimators but also in the class of all estimators satisfying a very weak and sensible condition. This property of a uniformly best linear affine estimator is shown in the present paper. Furthermore, two illustrative special cases are mentioned, where a generalized least squares estimator on the one hand and a general ridge or Kuks–Olman estimator on the other hand turn out to be uniformly best.  相似文献   

2.
We consider the linear regression modely=Xβ+u with prior information on the unknown parameter vector β. The additional information on β is given by a fuzzy set. Using the mean squared error criterion we derive linear estimators that optimally combine the data with the fuzzy prior information. Our approach generalizes the classical minimax procedure firstly proposed by Kuks and Olman.  相似文献   

3.
H. Bandemer  W. Nagel 《Statistics》2013,47(3):297-305
In the present paper we mean by weak and fuzzy prior knowledge that we can specify some function of a certain quadratic form of the unknown parameters of the setup, which function is derived from common prior information concerning the unknown response surface. We look for estimators (especially shrunken LSE and preliminary test stimators), which can utilize this prior knowledge to decrease the minimax risk for squared loss.  相似文献   

4.
5.
For the linear regression model y=Xβ+e with severe multicollinearity, we put forward three shrinkage-type estimators based on the ordinary least-squares estimator including two types of independent factor estimators and a seemingly convex combination. The simulation study shows that the new estimators are not good enough when multicollinearity is mild to moderate, but perform very well when multicollinearity is severe to very severe.  相似文献   

6.
The problem of consistent estimation of regression coefficients in a multivariate linear ultrastructural measurement error model is considered in this article when some additional information on regression coefficients is available a priori. Such additional information is expressible in the form of stochastic linear restrictions. Utilizing stochastic restrictions given a priori, some methodologies are presented to obtain the consistent estimators of regression coefficients under two types of additional information separately, viz., covariance matrix of measurement errors and reliability matrix associated with explanatory variables. The measurement errors are assumed to be not necessarily normally distributed. The asymptotic properties of the proposed estimators are derived and analyzed analytically as well as numerically through a Monte Carlo simulation experiment.  相似文献   

7.
We consider a linear regression model with regression parameter β=(β1,…,βp)β=(β1,,βp) and independent and identically N(0,σ2)N(0,σ2) distributed errors. Suppose that the parameter of interest is θ=aTβθ=aTβ where aa is a specified vector. Define the parameter τ=cTβ-tτ=cTβ-t where the vector cc and the number tt are specified and aa and cc are linearly independent. Also suppose that we have uncertain prior information that τ=0τ=0. We present a new frequentist 1-α1-α confidence interval for θθ that utilizes this prior information. We require this confidence interval to (a) have endpoints that are continuous functions of the data and (b) coincide with the standard 1-α1-α confidence interval when the data strongly contradict this prior information. This interval is optimal in the sense that it has minimum weighted average expected length where the largest weight is given to this expected length when τ=0τ=0. This minimization leads to an interval that has the following desirable properties. This interval has expected length that (a) is relatively small when the prior information about ττ is correct and (b) has a maximum value that is not too large. The following problem will be used to illustrate the application of this new confidence interval. Consider a 2×22×2 factorial experiment with 20 replicates. Suppose that the parameter of interest θθ is a specified simple   effect and that we have uncertain prior information that the two-factor interaction is zero. Our aim is to find a frequentist 0.95 confidence interval for θθ that utilizes this prior information.  相似文献   

8.
The standard technique for estimating the variance of a linear regression coefficient is unbiased when the random errors of the observational units are independent and identically distributed. When the unit variances are not all equal, however, as is often the case in practice, this method can be biased. An unbiased variance estimator given uncorrelated, but not necessarily homoscedastic, unit errors is introduced here and compared to the conventional technique using real data.  相似文献   

9.
Estimationof the coefficient vector of a linear regression model subject to ellipsoidal constraints on the coefficients has been considered. Shrinkage methodology has been synthesized with minimax estimation technique and an estimator based on this has been proposed. The properties of this estimator have been derived under a quadratic loss set-up of the decision theory which are analysed to assess the behaviour of the proposed estimator. Superiority conditions for the dominance of this estimator over the existing minimax and least-squares estimators have also been derived.  相似文献   

10.
We consider the estimation of coefficients in a linear regression model when some responses on the study variable are missing and some prior information in the form of lower and upper bounds for the average values of missing responses is available. Employing the mixed regression framework, we present five estimators for the vector of regression coefficients. Their exact as well as asymptotic properties are discussed and superiority of one estimator over the other is examined.  相似文献   

11.
Summary.  We consider the problem of estimating the noise variance in homoscedastic nonparametric regression models. For low dimensional covariates t  ∈  R d ,  d =1, 2, difference-based estimators have been investigated in a series of papers. For a given length of such an estimator, difference schemes which minimize the asymptotic mean-squared error can be computed for d =1 and d =2. However, from numerical studies it is known that for finite sample sizes the performance of these estimators may be deficient owing to a large finite sample bias. We provide theoretical support for these findings. In particular, we show that with increasing dimension d this becomes more drastic. If d 4, these estimators even fail to be consistent. A different class of estimators is discussed which allow better control of the bias and remain consistent when d 4. These estimators are compared numerically with kernel-type estimators (which are asymptotically efficient), and some guidance is given about when their use becomes necessary.  相似文献   

12.
This paper considers alternative estimators of the intercept parameter of the linear regression model with normal error when uncertain non-sample prior information about the value of the slope parameter is available. The maximum likelihood, restricted, preliminary test and shrinkage estimators are considered. Based on their quadratic biases and mean square errors the relative performances of the estimators are investigated. Both analytical and graphical comparisons are explored. None of the estimators is found to be uniformly dominating the others. However, if the non-sample prior information regarding the value of the slope is not too far from its true value, the shrinkage estimator of the intercept parameter dominates the rest of the estimators.  相似文献   

13.
Multicollinearity and model misspecification are frequently encountered problems in practice that produce undesirable effects on classical ordinary least squares (OLS) regression estimator. The ridge regression estimator is an important tool to reduce the effects of multicollinearity, but it is still sensitive to a model misspecification of error distribution. Although rank-based statistical inference has desirable robustness properties compared to the OLS procedures, it can be unstable in the presence of multicollinearity. This paper introduces a rank regression estimator for regression parameters and develops tests for general linear hypotheses in a multiple linear regression model. The proposed estimator and the tests have desirable robustness features against the multicollinearity and model misspecification of error distribution. Asymptotic behaviours of the proposed estimator and the test statistics are investigated. Real and simulated data sets are used to demonstrate the feasibility and the performance of the estimator and the tests.  相似文献   

14.
These Fortran-77 subroutines provide building blocks for Generalized Cross-Validation (GCV) (Craven and Wahba, 1979) calculations in data analysis and data smoothing including ridge regression (Golub, Heath, and Wahba, 1979), thin plate smoothing splines (Wahba and Wendelberger, 1980), deconvolution (Wahba, 1982d), smoothing of generalized linear models (O'sullivan, Yandell and Raynor 1986, Green 1984 and Green and Yandell 1985), and ill-posed problems (Nychka et al., 1984, O'sullivan and Wahba, 1985). We present some of the types of problems for which GCV is a useful method of choosing a smoothing or regularization parameter and we describe the structure of the subroutines.Ridge Regression: A familiar example of a smoothing parameter is the ridge parameter X in the ridge regression problem which we write.  相似文献   

15.
In this article a class of restricted minimum bias linear estimators of the vector of unknown regression coefficients when multicollinearity among the columns of the design matrix exists, is obtained. The ordinary ridge regression, principal components and shrinkage estimators are members of this class. Moreover, our ap-proach can be used to improve, in some sense, certain classes of generalized ridge and shrinkage estimators of the vector of un-known parameters in linear models.  相似文献   

16.
17.
A well-known problem is that ordinary least squares estimation of the parameters in the usual linear model can be highly ineficient when the error term has a heavy-tailed distribution. Inefficiency is also associated with situations where the error term is heteroscedastic, and standard confidence intervals can have probability coverage substantially different from the nominal level. This paper compares the small-sample efficiency of six methods that address this problem, three of which model the variance heterogeneity nonparametrically. Three methods were found to be relatively ineffective, but the other three perform relatively well. One of the six (M-regression with a Huber φ function and Schweppe weights) was found to have the highest efficiency for most of the situations considered in the simulations, but there might be situations where one of two other methods gives better results. One of these is a new method that uses a running interval smoother to estimate the optimal weights in weighted least squares, and the other is a method recently proposed by Cohen, Dalal, and Tukey. Computing a confidence interval for the slope using a bootstrap technique is also considered.  相似文献   

18.
19.
This paper is mainly concerned with minimax estimation in the general linear regression model y=Xβ+εy=Xβ+ε under ellipsoidal restrictions on the parameter space and quadratic loss function. We confine ourselves to estimators that are linear in the response vector y  . The minimax estimators of the regression coefficient ββ are derived under homogeneous condition and heterogeneous condition, respectively. Furthermore, these obtained estimators are the ridge-type estimators and mean dispersion error (MDE) superior to the best linear unbiased estimator b=(XW-1X)-1XW-1yb=(XW-1X)-1XW-1y under some conditions.  相似文献   

20.
In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large-sample and the high-dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号