首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper introduces a novel bootstrap procedure to perform inference in a wide class of partially identified econometric models. We consider econometric models defined by finitely many weak moment inequalities, 2 We can also admit models defined by moment equalities by combining pairs of weak moment inequalities.
which encompass many applications of economic interest. The objective of our inferential procedure is to cover the identified set with a prespecified probability. 3 We deal with the objective of covering each element of the identified set with a prespecified probability in Bugni (2010a).
We compare our bootstrap procedure, a competing asymptotic approximation, and subsampling procedures in terms of the rate at which they achieve the desired coverage level, also known as the error in the coverage probability. Under certain conditions, we show that our bootstrap procedure and the asymptotic approximation have the same order of error in the coverage probability, which is smaller than that obtained by using subsampling. This implies that inference based on our bootstrap and asymptotic approximation should eventually be more precise than inference based on subsampling. A Monte Carlo study confirms this finding in a small sample simulation.  相似文献   

2.
This paper analyzes the properties of standard estimators, tests, and confidence sets (CS's) for parameters that are unidentified or weakly identified in some parts of the parameter space. The paper also introduces methods to make the tests and CS's robust to such identification problems. The results apply to a class of extremum estimators and corresponding tests and CS's that are based on criterion functions that satisfy certain asymptotic stochastic quadratic expansions and that depend on the parameter that determines the strength of identification. This covers a class of models estimated using maximum likelihood (ML), least squares (LS), quantile, generalized method of moments, generalized empirical likelihood, minimum distance, and semi‐parametric estimators. The consistency/lack‐of‐consistency and asymptotic distributions of the estimators are established under a full range of drifting sequences of true distributions. The asymptotic sizes (in a uniform sense) of standard and identification‐robust tests and CS's are established. The results are applied to the ARMA(1, 1) time series model estimated by ML and to the nonlinear regression model estimated by LS. In companion papers, the results are applied to a number of other models.  相似文献   

3.
This paper studies nonparametric estimation of conditional moment restrictions in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators, which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite‐dimensional function parameter space. Some of the PSMD procedures use slowly growing finite‐dimensional sieves with flexible penalties or without any penalty; others use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup‐norm or a root mean squared norm), allowing for possibly noncompact infinite‐dimensional parameter spaces. For both mildly and severely ill‐posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号