首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Continuous proportional outcomes are collected from many practical studies, where responses are confined within the unit interval (0,1). Utilizing Barndorff‐Nielsen and Jørgensen's simplex distribution, we propose a new type of generalized linear mixed‐effects model for longitudinal proportional data, where the expected value of proportion is directly modelled through a logit function of fixed and random effects. We establish statistical inference along the lines of Breslow and Clayton's penalized quasi‐likelihood (PQL) and restricted maximum likelihood (REML) in the proposed model. We derive the PQL/REML using the high‐order multivariate Laplace approximation, which gives satisfactory estimation of the model parameters. The proposed model and inference are illustrated by simulation studies and a data example. The simulation studies conclude that the fourth order approximate PQL/REML performs satisfactorily. The data example shows that Aitchison's technique of the normal linear mixed model for logit‐transformed proportional outcomes is not robust against outliers.  相似文献   

2.
In this paper, we consider the maximum likelihood and Bayes estimation of the scale parameter of the half-logistic distribution based on a multiply type II censored sample. However, the maximum likelihood estimator(MLE) and Bayes estimator do not exist in an explicit form for the scale parameter. We consider a simple method of deriving an explicit estimator by approximating the likelihood function and discuss the asymptotic variances of MLE and approximate MLE. Also, an approximation based on the Laplace approximation (Tierney & Kadane, 1986) is used to obtain the Bayes estimator. In order to compare the MLE, approximate MLE and Bayes estimates of the scale parameter, Monte Carlo simulation is used.  相似文献   

3.
Based on a progressively type II censored sample, the maximum likelihood and Bayes estimators of the scale parameter of the half-logistic distribution are derived. However, since the maximum likelihood estimator (MLE) and Bayes estimator do not exist in an explicit form for the scale parameter, we consider a simple method of deriving an explicit estimator by approximating the likelihood function and derive the asymptotic variances of MLE and approximate MLE. Also, an approximation based on the Laplace approximation (Tierney and Kadane in J Am Stat Assoc 81:82–86, 1986) and importance sampling methods are used for obtaining the Bayes estimator. In order to compare the performance of the MLE, approximate MLE and Bayes estimates of the scale parameter, we use Monte Carlo simulation.  相似文献   

4.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

5.
This paper considers the three‐parameter family of symmetric unimodal distributions obtained by wrapping the location‐scale extension of Student's t distribution onto the unit circle. The family contains the wrapped normal and wrapped Cauchy distributions as special cases, and can be used to closely approximate the von Mises distribution. In general, the density of the family can only be represented in terms of an infinite summation, but its trigonometric moments are relatively simple expressions involving modified Bessel functions. Point estimation of the parameters is considered, and likelihood‐based methods are used to fit the family of distributions in an illustrative analysis of cross‐bed measurements. The use of the family as a means of approximating the von Mises distribution is investigated in detail, and new efficient algorithms are proposed for the generation of approximate pseudo‐random von Mises variates.  相似文献   

6.
7.
The authors explore likelihood‐based methods for making inferences about the components of variance in a general normal mixed linear model. In particular, they use local asymptotic approximations to construct confidence intervals for the components of variance when the components are close to the boundary of the parameter space. In the process, they explore the question of how to profile the restricted likelihood (REML). Also, they show that general REML estimates are less likely to fall on the boundary of the parameter space than maximum‐likelihood estimates and that the likelihood‐ratio test based on the local asymptotic approximation has higher power than the likelihood‐ratio test based on the usual chi‐squared approximation. They examine the finite‐sample properties of the proposed intervals by means of a simulation study.  相似文献   

8.
Abstract. Frailty models with a non‐parametric baseline hazard are widely used for the analysis of survival data. However, their maximum likelihood estimators can be substantially biased in finite samples, because the number of nuisance parameters associated with the baseline hazard increases with the sample size. The penalized partial likelihood based on a first‐order Laplace approximation still has non‐negligible bias. However, the second‐order Laplace approximation to a modified marginal likelihood for a bias reduction is infeasible because of the presence of too many complicated terms. In this article, we find adequate modifications of these likelihood‐based methods by using the hierarchical likelihood.  相似文献   

9.
In this paper, we consider the family of skew generalized t (SGT) distributions originally introduced by Theodossiou [P. Theodossiou, Financial data and the skewed generalized t distribution, Manage. Sci. Part 1 44 (12) ( 1998), pp. 1650–1661] as a skew extension of the generalized t (GT) distribution. The SGT distribution family warrants special attention, because it encompasses distributions having both heavy tails and skewness, and many of the widely used distributions such as Student's t, normal, Hansen's skew t, exponential power, and skew exponential power (SEP) distributions are included as limiting or special cases in the SGT family. We show that the SGT distribution can be obtained as the scale mixture of the SEP and generalized gamma distributions. We investigate several properties of the SGT distribution and consider the maximum likelihood estimation of the location, scale, and skewness parameters under the assumption that the shape parameters are known. We show that if the shape parameters are estimated along with the location, scale, and skewness parameters, the influence function for the maximum likelihood estimators becomes unbounded. We obtain the necessary conditions to ensure the uniqueness of the maximum likelihood estimators for the location, scale, and skewness parameters, with known shape parameters. We provide a simple iterative re-weighting algorithm to compute the maximum likelihood estimates for the location, scale, and skewness parameters and show that this simple algorithm can be identified as an EM-type algorithm. We finally present two applications of the SGT distributions in robust estimation.  相似文献   

10.
We consider exact and approximate Bayesian computation in the presence of latent variables or missing data. Specifically we explore the application of a posterior predictive distribution formula derived in Sweeting And Kharroubi (2003), which is a particular form of Laplace approximation, both as an importance function and a proposal distribution. We show that this formula provides a stable importance function for use within poor man’s data augmentation schemes and that it can also be used as a proposal distribution within a Metropolis-Hastings algorithm for models that are not analytically tractable. We illustrate both uses in the case of a censored regression model and a normal hierarchical model, with both normal and Student t distributed random effects. Although the predictive distribution formula is motivated by regular asymptotic theory, it is not necessary that the likelihood has a closed form or that it possesses a local maximum.  相似文献   

11.
The skew normal model is a class of distributions that extends the Gaussian family by including a shape parameter. Despite its nice properties, this model presents some problems with the estimation of the shape parameter. In particular, for moderate sample sizes, the maximum likelihood estimator is infinite with positive probability. As a solution, we use a modified score function as an estimating equation for the shape parameter. It is proved that the resulting modified maximum likelihood estimator is always finite. For confidence intervals a quasi-likelihood approach is considered. When regression and scale parameters are present, the method is combined with maximum likelihood estimators for these parameters. Finally, also the skew t distribution is considered, which may be viewed as an extension of the skew normal. The same method is applied to this model, considering the degrees of freedom as known.  相似文献   

12.
This paper considers the problem of estimating the probability P = Pr(X < Y) when X and Y are independent exponential random variables with unequal scale parameters and a common location parameter. Uniformly minimum variance unbiased estimator of P is obtained. The asymptotic distribution of the maximum likelihood estimator is obtained and then the asymptotic equivalence of the two estimators is established. Performance of the two estimators for moderate sample sizes is studied by Monte Carlo simulation. An approximate interval estimator is also obtained.  相似文献   

13.
A simulation study of the binomial-logit model with correlated random effects is carried out based on the generalized linear mixed model (GLMM) methodology. Simulated data with various numbers of regression parameters and different values of the variance component are considered. The performance of approximate maximum likelihood (ML) and residual maximum likelihood (REML) estimators is evaluated. For a range of true parameter values, we report the average biases of estimators, the standard error of the average bias and the standard error of estimates over the simulations. In general, in terms of bias, the two methods do not show significant differences in estimating regression parameters. The REML estimation method is slightly better in reducing the bias of variance component estimates.  相似文献   

14.
The main object of this article is to discuss maximum likelihood inference for the epsilon-skew-t distribution. Special cases of this distribution include the epsilon-skew-Cauchy and the epsilon-skew-normal distributions. We derive the information matrix for the maximum likelihood estimators. The approach is applied to a data set presenting significant amount of skewness and heavy tails. In the application we consider the epsilon-skew-t distribution with known and unknown degrees of freedom parameter, showing great flexibility in adjusting to skew data with heavy tails.  相似文献   

15.
Based on progressively Type-I interval censored sample, the problem of estimating unknown parameters of a two parameter generalized half-normal(GHN) distribution is considered. Different methods of estimation are discussed. They include the maximum likelihood estimation, midpoint approximation method, approximate maximum likelihood estimation, method of moments, and estimation based on probability plot. Several Bayesian estimates with respect to different symmetric and asymmetric loss functions such as squared error, LINEX, and general entropy is calculated. The Lindley’s approximation method is applied to determine Bayesian estimates. Monte Carlo simulations are performed to compare the performances of the different methods. Finally, analysis is also carried out for a real dataset.  相似文献   

16.
Linear mixed models are regularly applied to animal and plant breeding data to evaluate genetic potential. Residual maximum likelihood (REML) is the preferred method for estimating variance parameters associated with this type of model. Typically an iterative algorithm is required for the estimation of variance parameters. Two algorithms which can be used for this purpose are the expectation‐maximisation (EM) algorithm and the parameter expanded EM (PX‐EM) algorithm. Both, particularly the EM algorithm, can be slow to converge when compared to a Newton‐Raphson type scheme such as the average information (AI) algorithm. The EM and PX‐EM algorithms require specification of the complete data, including the incomplete and missing data. We consider a new incomplete data specification based on a conditional derivation of REML. We illustrate the use of the resulting new algorithm through two examples: a sire model for lamb weight data and a balanced incomplete block soybean variety trial. In the cases where the AI algorithm failed, a REML PX‐EM based on the new incomplete data specification converged in 28% to 30% fewer iterations than the alternative REML PX‐EM specification. For the soybean example a REML EM algorithm using the new specification converged in fewer iterations than the current standard specification of a REML PX‐EM algorithm. The new specification integrates linear mixed models, Henderson's mixed model equations, REML and the REML EM algorithm into a cohesive framework.  相似文献   

17.
Based on progressively Type II censored samples, we consider the estimation of R = P(Y < X) when X and Y are two independent Weibull distributions with different shape parameters, but having the same scale parameter. The maximum likelihood estimator, approximate maximum likelihood estimator, and Bayes estimator of R are obtained. Based on the asymptotic distribution of R, the confidence interval of R are obtained. Two bootstrap confidence intervals are also proposed. Analysis of a real data set is given for illustrative purposes. Monte Carlo simulations are also performed to compare the different proposed methods.  相似文献   

18.
In this paper, progressive-stress accelerated life tests are applied when the lifetime of a product under design stress follows the exponentiated distribution [G(x)]α. The baseline distribution, G(x), follows a general class of distributions which includes, among others, Weibull, compound Weibull, power function, Pareto, Gompertz, compound Gompertz, normal and logistic distributions. The scale parameter of G(x) satisfies the inverse power law and the cumulative exposure model holds for the effect of changing stress. A special case for an exponentiated exponential distribution has been discussed. Using type-II progressive hybrid censoring and MCMC algorithm, Bayes estimates of the unknown parameters based on symmetric and asymmetric loss functions are obtained and compared with the maximum likelihood estimates. Normal approximation and bootstrap confidence intervals for the unknown parameters are obtained and compared via a simulation study.  相似文献   

19.
Based on progressively Type-II censored samples, this article deals with inference for the stress-strength reliability R = P(Y < X) when X and Y are two independent two-parameter bathtub-shape lifetime distributions with different scale parameters, but having the same shape parameter. Different methods for estimating the reliability are applied. The maximum likelihood estimate of R is derived. Also, its asymptotic distribution is used to construct an asymptotic confidence interval for R. Assuming that the shape parameter is known, the maximum likelihood estimator of R is obtained. Based on the exact distribution of the maximum likelihood estimator of R an exact confidence interval of that has been obtained. The uniformly minimum variance unbiased estimator are calculated for R. Bayes estimate of R and the associated credible interval are also got under the assumption of independent gamma priors. Monte Carlo simulations are performed to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose. Finally, we will generalize this distribution to the proportional hazard family with two parameters and derive various estimators in this family.  相似文献   

20.
This paper explores the asymptotic distribution of the restricted maximum likelihood estimator of the variance components in a general mixed model. Restricting attention to hierarchical models, central limit theorems are obtained using elementary arguments with only mild conditions on the covariates in the fixed part of the model and without having to assume that the data are either normally or spherically symmetrically distributed. Further, the REML and maximum likelihood estimators are shown to be asymptotically equivalent in this general framework, and the asymptotic distribution of the weighted least squares estimator (based on the REML estimator) of the fixed effect parameters is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号