首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A batch of M items is inspected for defectives. Suppose there are d defective items in the batch. Let d 0 be a given standard used to evaluate the quality of the population where 0 < d 0 < M. The problem of testing H 0: d < d 0 versus H 1: d ≥ d 0 is considered. It is assumed that past observations are available when the current testing problem is considered. Accordingly, the empirical Bayes approach is employed. By using information obtained from the past data, an empirical Bayes two-stage testing procedure is developed. The associated asymptotic optimality is investigated. It is proved that the rate of convergence of the empirical Bayes two-stage testing procedure is of order O (exp(? c? n)), for some constant c? > 0, where n is the number of past observations at hand.  相似文献   

2.
We investigate an empirical Bayes testing problem in a positive exponential family having pdf f{x/θ)=c(θ)u(x) exp(?x/θ), x>0, θ>0. It is assumed that θ is in some known compact interval [C1, C2]. The value C1 is used in the construction of the proposed empirical Bayes test δ* n. The asymptotic optimality and rate of convergence of its associated Bayes risk is studied. It is shown that under the assumption that θ is in [C1, C2] δ* n is asymptotically optimal at a rate of convergence of order O(n?1/n n). Also, δ* n is robust in the sense that δ* n still possesses the asymptotic optimality even the assumption that "C1≦θ≦C2 may not hold.  相似文献   

3.
Bayesian and empirical Bayesian decision rules are exhibited for the interval estimation of the parameter 0 of a Uniform (0,θ) distribution. The estimate ?,δ>resulting in the interval [?,?+δ]suffers loss given by L(?,δ>,θ)=1-[?≦e≦?+δ]+c1((?-θ)2+(?+δ?θ)2))+c2δ. The solution is presented for prior distributions G which have bounded support, no point masses,∫θ?mdG(θ)<∞ and for some integer m. An example is presented involving a particular parametric form for G and rates of risk convergence in the empirical Bayes problem for this example are calculated.  相似文献   

4.
A problem of selecting populations better than a control is considered. When the populations are uniformly distributed, empirical Bayes rules are derived for a linear loss function for both the known control parameter and the unknown control parameter cases. When the priors are assumed to have bounded supports, empirical Bayes rules for selecting good populations are derived for distributions with truncation parameters (i.e. the form of the pdf is f(x|θ)= pi(x)ci(θ)I(0, θ)(x)). Monte Carlo studies are carried out which determine the minimum sample sizes needed to make the relative errors less than ε for given ε-values.  相似文献   

5.
Let X1,…,Xn be a sample from a population with continuous distribution function F(x?θ) such that F(x)+F(-x)=1 and 0<F(x)<1, x?R1. It is shown that the power- function of a monotone test of H: θ=θ0 against K: θ>θ0 cannot tend to 1 as θ?θ0 → ∞ more than n times faster than the tails of F tend to 0. Some standard as well as robust tests are considered with respect to this rate of convergence.  相似文献   

6.
This article considers an empirical Bayes testing problem for the guarantee lifetime in the two-parameter exponential distributions with non identical components. We study a method of constructing empirical Bayes tests under a class of unknown prior distributions for the sequence of the component testing problems. The asymptotic optimality of the sequence of empirical Bayes tests is studied. Under certain regularity conditions on the prior distributions, it is shown that the sequence of the constructed empirical Bayes tests is asymptotically optimal, and the associated sequence of regrets converges to zero at a rate O(n? 1 + 1/[2(r + α) + 1]) for some integer r ? 0 and 0 ? α ? 1 depending on the unknown prior distributions, where n is the number of past data available when the (n + 1)st component testing problem is considered.  相似文献   

7.
8.
This paper deals with the problem of estimating the binomial parameter via the nonparametric empirical Bayes approach. This estimation problem has the feature that estimators which are asymptotically optimal in the usual empirical Bayes sense do not exist (Robbins (1958, 1964)), However, as pointed out by Liang (1934) and Gupta and Liang (1988), it is possible to construct asymptotically optimal empirical Bayes estimators if the unknown prior is symmetric about the point 1/2, In this paper, assuming symmetric priors a monotone empirical Bayes estimator is constructed by using the isotonic regression method. This estimator is asymptotically optimal in the usual empirical Bayes sense. The corresponding rate of convergence is investigated and shown to be of order n-1, where n is the number of past observations at hand.  相似文献   

9.
10.
We examine a more general form of consistency which does not necessarily rely on the correct specification of the likelihood in the Bayesian setting, but we restrict the form of the likelihood to be in a minimal standard exponential family. First, we investigate the asymptotic behavior of the Bayes estimator of a parameter, and show that the Bayes estimator is consistent under the condition that the exponential family is full. However, we find that θi=θj and ∥θiθj∥<ε, even for very small ε, behave differently, even in an asymptotic manner, when the model is not correct. We note that the distinction applies generally to Bayesian testing problems.  相似文献   

11.
Many hypothesis problems in practice require the selection of the left side or the right side alternative when the null is rejected. For parametric models, this problem can be stated as H0:θ=θ0H0:θ=θ0vs.  H:θ<θ0H:θ<θ0 or H+:θ>θ0H+:θ>θ0. Frequentists use Type-III error (directional error) to develop statistical methodologies. This approach and other approaches considered in the literature do not take into account the situations where the selection of one side may be more important or when one side may be more probable than the other. This problem can be tackled by specifying a loss function and/or by specifying a hierarchical prior structure with allowing the skewness in the alternatives. Based on this, we develop a Bayesian decision theoretic methodology and show that the resulted Bayes rule perform better in the side of the alternatives which is more probable. The methodology can be also used in a frequentist's framework when it is desired to discover an alternative that is more important. We also consider the multiple hypotheses problem and develop new false discovery rates for the selection of the left and the right sides of alternatives. These discovery rates would be useful in the situations when one side of the alternatives are more important or more probable than the other.  相似文献   

12.
Consider a linear regression model with regression parameter β=(β1,…,βp) and independent normal errors. Suppose the parameter of interest is θ=aTβ, where a is specified. Define the s-dimensional parameter vector τ=CTβt, where C and t are specified. Suppose that we carry out a preliminary F test of the null hypothesis H0:τ=0 against the alternative hypothesis H1:τ≠0. It is common statistical practice to then construct a confidence interval for θ with nominal coverage 1−α, using the same data, based on the assumption that the selected model had been given to us a priori (as the true model). We call this the naive 1−α confidence interval for θ. This assumption is false and it may lead to this confidence interval having minimum coverage probability far below 1−α, making it completely inadequate. We provide a new elegant method for computing the minimum coverage probability of this naive confidence interval, that works well irrespective of how large s is. A very important practical application of this method is to the analysis of covariance. In this context, τ can be defined so that H0 expresses the hypothesis of “parallelism”. Applied statisticians commonly recommend carrying out a preliminary F test of this hypothesis. We illustrate the application of our method with a real-life analysis of covariance data set and a preliminary F test for “parallelism”. We show that the naive 0.95 confidence interval has minimum coverage probability 0.0846, showing that it is completely inadequate.  相似文献   

13.
In an empirical Bayes decision problem, a prior distribution ? is placed on a one-dimensfonal family G of priors Gw, wεΩ, to produce a Bayes empirical Bayes estimator, The asymptotic optimaiity of the Bayes estimator is established when the support of ? is Ω and the marginal distributions Hw have monotone likelihood ratio and continuous Kullback-Leibler information number.  相似文献   

14.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

15.
This paper deals with an empirical Bayes testing problem for the mean lifetimes of exponential distributions with unequal sample sizes. We study a method to construct empirical Bayes tests {δ* nl + 1,n } n = 1 for the sequence of the testing problems. The asymptotic optimality of {δ* nl + 1,n } n = 1 is studied. It is shown that the sequence of empirical Bayes tests {δ* nl + 1,n } n = 1 is asymptotically optimal, and its associated sequence of regrets converges to zero at a rate (ln n)4M?1/n, where M is an upper bound of sample sizes.  相似文献   

16.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results.  相似文献   

17.
Thompson (1997) considered a wide definition of p-value and found the Baves p-value for testing a ooint null hypothesis H0: θ= θ0 versus H1: θ ≠ θ0. In this paper, the general case of testing H0: θ ∈ ?0 versus H1: θ ∈ ?c 0 is studied. A generalization of the concept of p-value is given, and it is proved that the posterior predictive p-value based on the posterior odds is (asymptotically) a Bayes p-value. Finally, it is suggested that this posterior predictive p-value could be used as a reference p-value  相似文献   

18.
19.
Let X1,X2, … be iid random variables with the pdf f(x,θ)=exp(θx?b(θ)) relative to a σ-finite measure μ, and consider the problem of deciding among three simple hypotheses Hi:θ=θi (1?i?3) subject to P(acceptHi|θi)=1?α (1?i?3). A procedure similar to Sobel–Wald procedure is discussed and its asymptotic efficiency as compared with the best nonsequential test is obtained by finding the limit lima→0(EiN(a)/n(a)), where N (a) is the stopping time of the proposed procedure and n(a) is the sample size of the best non-sequential test. It is shown that the same asymptotic limit holds for the original Sobel–Wald procedure. Specializing to N(θ,1) distribution it is found that lima→0(EiN(α)/n(α))=14 (i=1,2) and lima→0 (E3N(α)n(α))=δ21/4δ, where δi=(θi+1?θi) with 0<δ1?δ2. Also, the asymptotic efficiency evaluated when the X's have an exponential distribution.  相似文献   

20.
The largest value of the constant c for which holds over the class of random variables X with non-zero mean and finite second moment, is c=π. Let the random variable (r.v.) X with distribution function F(·) have non-zero mean and finite second moment. In studying a certain random walk problem (Daley, 1976) we sought a bound on the characteristic function of the form for some positive constant c. Of course the inequality is non-trivial only provided that . This note establishes that the best possible constant c =π. The wider relevance of the result is we believe that it underlines the use of trigonometric inequalities in bounding the (modulus of a) c.f. (see e.g. the truncation inequalities in §12.4 of Loève (1963)). In the present case the bound thus obtained is the best possible bound, and is better than the bound (2) |1-?(θ)| ≥ |θEX|-θ2EX2\2 obtained by applying the triangular inequality to the relation which follows from a two-fold integration by parts in the defining equation (*). The treatment of the counter-example furnished below may also be of interest. To prove (1) with c=π, recall that sin u > u(1-u/π) (all real u), so Since |E sinθX|-|E sin(-θX)|, the modulus sign required in (1) can be inserted into (4). Observe that since sin u > u for u < 0, it is possible to strengthen (4) to (denoting max(0,x) by x+) To show that c=π is the best possible constant in (1), assume without loss of generality that EX > 0, and take θ > 0. Then (1) is equivalent to (6) c < θEX2/{EX-|1-?(θ)|/θ} for all θ > 0 and all r.v.s. X with EX > 0 and EX2. Consider the r.v. where 0 < x < 1 and 0 < γ < ∞. Then EX=1, EX2=1+γx2, From (4) it follows that |1-?(θ)| > 0 for 0 < |θ| <π|EX|/EX2 but in fact this positivity holds for 0 < |θ| < 2π|EX|/EX2 because by trigonometry and the Cauchy-Schwartz inequality, |1-?(θ)| > |Re(1-?(θ))| = |E(1-cosθX)| = 2|E sin2θX/2| (10) >2(E sinθX/2)2 (11) >(|θEX|-θ2EX2/2π)2/2 > 0, the inequality at (11) holding provided that |θEX|-θ2EX2/2π > 0, i.e., that 0 < |θ| < 2π|EX|/EX2. The random variable X at (7) with x= 1 shows that the range of positivity of |1-?(θ)| cannot in general be extended. If X is a non-negative r.v. with finite positive mean, then the identity shows that (1-?(θ))/iθEX is the c.f. of a non-negative random variable, and hence (13) |1-?(θ)| < |θEX| (all θ). This argument fans if pr{X < 0}pr{X> 0} > 0, but as a sharper alternative to (14) |1-?(θ)| < |θE|X||, we note (cf. (2) and (3)) first that (15) |1-?(θ)| < |θEX| +θ2EX2/2. For a bound that is more precise for |θ| close to 0, |1-?(θ)|2= (Re(1-?(θ)))2+ (Im?(θ))2 <(θ2EX2/2)2+(|θEX| +θ2EX2-/π)2, so (16) |1-?(θ)| <(|θEX| +θ2EX2-/π) + |θ|3(EX2)2/8|EX|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号