首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Foldover is a classic technique used to select follow-up experimental runs when an initial experiment yields ambiguities. While foldover has been soundly investigated for regular designs, less research has been devoted to this technique for nonregular designs. Previous work focuses on the use of the generalized minimum aberration criterion to obtain optimal foldover plans. In contrast, this article utilizes the concept of minimal dependent sets (MDSs) and associated criteria to rank foldovers of nonregular designs. We propose an integer programming-based solution to aid in the location and enumeration of MDSs. MDS-optimal foldovers for selected nonregular designs are presented and discussed.  相似文献   

2.
A closer look at de-aliasing effects using an efficient foldover technique   总被引:1,自引:0,他引:1  
A. M. Elsawah 《Statistics》2017,51(3):532-557
Foldover techniques are used to reduce the confounding when some important effects (usually lower order effects) cannot be estimated independently. This article develops an efficient foldover mechanism for symmetric or asymmetric designs, whether regular or nonregular. In this paper, we take the uniformity criteria (UC) as the optimality measures to construct the optimal combined designs (initial design plus its corresponding foldover design) which have better capability of estimating lower order effects. The relationship between any initial design and its combined design is studied. A comparison study between the combined designs via different UC is provided. Equivalence between any combined design and its complementary combined design is investigated, which is a very useful constraint that reduce the search space. Using our results as benchmarks, we can implement a powerful algorithm for constructing optimal combined designs. Our work covers as well as gives results better than recent works of about 20 articles in the last few years as special cases. So this article is a good reference for constructing effective designs.  相似文献   

3.
Fractional factorial (FF) designs are no doubt the most widely used designs in experimental investigations due to their efficient use of experimental runs. One price we pay for using FF designs is, clearly, our inability to obtain estimates of some important effects (main effects or second order interactions) that are separate from estimates of other effects (usually higher order interactions). When the estimate of an effect also includes the influence of one or more other effects the effects are said to be aliased. Folding over an FF design is a method for breaking the links between aliased effects in a design. The question is, how do we define the foldover structure for asymmetric FF designs, whether regular or nonregular? How do we choose the optimal foldover plan? How do we use optimal foldover plans to construct combined designs which have better capability of estimating lower order effects? The main objective of the present paper is to provide answers to these questions. Using the new results in this paper as benchmarks, we can implement a powerful and efficient algorithm for finding optimal foldover plans which can be used to break links between aliased effects.  相似文献   

4.
The objective of this article is to study the issue of employing the uniformity criterion measured by wrap-around L2-discrepancy to assess the optimal foldover plans. For mixed two- and three-level fractional factorials as the original designs, general foldover plan and combined design under a foldover plan are defined, and the equivalence between any foldover plan and its complementary foldover plan is investigated. A lower bound of wrap-around L2-discrepancy of combined designs under a general foldover plan is obtained, which can be used as a benchmark for searching optimal foldover plans. Moreover, it also provides a theoretical justification for optimal foldover plans in terms of uniformity criterion.  相似文献   

5.
The foldover is a useful technique in construction of two-level factorial designs. A foldover design is the follow-up experiment generated by reversing the sign(s) of one or more factors in the initial design. The full design obtained by joining the runs in the foldover design to those of the initial design is called the combined design. In this article, some new lower bounds of various discrepancies of combined designs, such as the centered, symmetric, and wrap-around L2-discrepancies, are obtained, which can be used as a better benchmark for searching optimal foldover plans. Our results provide a theoretical justification for optimal foldover plans in terms of uniformity criterion.  相似文献   

6.
The foldover is a useful technique in the construction of two-level factorial designs for follow-up experiments. To search an optimal foldover plans is an important issue. In this paper, for a set of asymmetric fractional factorials such as the original designs, a lower bound for centred L 2-discrepancy of combined designs under a general foldover plan is obtained, which can be used as a benchmark for searching optimal foldover plans. All of our results are the extended ones of Ou et al. [Lower bounds of various discrepancies on combined designs, Metrika 74 (2011), pp. 109–119] for symmetric designs to asymmetric designs. Moreover, it also provides a theoretical justification for optimal foldover plans in terms of uniformity criterion.  相似文献   

7.
In this paper, we develop a new mechanism for finding the optimal foldover plans (OFPs) which is based on the uniformity criteria measured by Lee discrepancy, wrap-around L2-discrepancy, and centered L2-discrepancy. For three-level fractional factorials as the original designs, general foldover plans and combined designs are defined, and lower bounds of these three discrepancies of combined designs under general foldover plans are also obtained, which can be used as benchmarks for searching OFPs. Illustrative examples with a comparison study between the foldover plans under these discrepancies are provided. Our results provide a theoretical justification for OFPs of three-level designs in terms of uniformity criteria.  相似文献   

8.
We consider the problem of constructing good two-level nonregular fractional factorial designs. The criteria of minimum G and G2 aberration are used to rank designs. A general design structure is utilized to provide a solution to this practical, yet challenging, problem. With the help of this design structure, we develop an efficient algorithm for obtaining a collection of good designs based on the aforementioned two criteria. Finally, we present some results for designs of 32 and 40 runs obtained from applying this algorithmic approach.  相似文献   

9.
The presence of block effects makes the optimal selection of fractional factorial designs a difficult task. The existing frequentist methods try to combine treatment and block wordlength patterns and apply minimum aberration criterion to find the optimal design. However, ambiguities exist in combining the two wordlength patterns and therefore, the optimality of such designs can be challenged. Here we propose a Bayesian approach to overcome this problem. The main technique is to postulate a model and a prior distribution to satisfy the common assumptions in blocking and then, to develop an optimal design criterion for the efficient estimation of treatment effects. We apply our method to develop regular, nonregular, and mixed-level blocked designs. Several examples are presented to illustrate the advantages of the proposed method.  相似文献   

10.
A generalized neighbor design relaxes the equality condition on the number of times two treatments as neighbors in the design. In this article, we have considered the construction of some classes of generalized neighbor designs with block size k=3 by using the method of cyclic shifts. The distinguishing feature of this construction method is that the properties of a design can easily be obtained from the sets of shifts instead of constructing the actual blocks of the design. A catalog of generalized neighbor designs with block size k=3 is compiled for v∈{5,6,…,18} treatments and for different replications. We provide the reader with a simpler method of construction, and in general the catalog that gives an open choice to the experimenter for selecting any class of neighbor designs.  相似文献   

11.
The authors introduce the notion of split generalized wordlength pattern (GWP), i.e., treatment GWP and block GWP, for a blocked nonregular factorial design. They generalize the minimum aberration criterion to suit this type of design. Connections between factorial design theory and coding theory allow them to obtain combinatorial identities that govern the relationship between the split GWP of a blocked factorial design and that of its blocked consulting design. These identities work for regular and nonregular designs. Furthermore, the authors establish general rules for identifying generalized minimum aberration (GMA) blocked designs through their blocked consulting designs. Finally they tabulate and compare some GMA blocked designs from Hall's orthogonal array OA(16,215,2) of type III.  相似文献   

12.
This paper mainly studies the E-optimality of block designs under a general heteroscedastic setting. The C-matrix of a block design under a heteroscedastic setting is obtained by using generalized least squares. Some bounds for the smallest positive eigenvalue of C-matrix are obtained in some general classes of connected designs. Use of these bounds is then made to obtain certain E-optimal block designs in various classes of connected block designs.  相似文献   

13.
In practice, to reduce systematic variation and increase precision of effect estimation, a practical design strategy is then to partition the experimental units into homogeneous groups, known as blocks. It is an important issue to study the optimal way on blocking the experimental units. Blocked general minimum lower order confounding (B1-GMC) is a new criterion for selecting optimal block designs. The paper considers the construction of optimal two-level block designs with respect to the B1-GMC criterion. By utilizing doubling theory and MaxC2 design, some optimal block designs with respect to the B1-GMC criterion are obtained.  相似文献   

14.
The minimum aberration criterion has been advocated for ranking foldovers of 2k−p2kp fractional factorial designs (Li and Lin, 2003); however, a minimum aberration design may not maximize the number of clear low-order effects. We propose using foldover plans that sequentially maximize the number of clear low-order effects in the combined (initial plus foldover) design and investigate the extent to which these foldover plans differ from those that are optimal under the minimum aberration criterion. A small catalog is provided to summarize the results.  相似文献   

15.
Uniform designs are widely used in various applications. However, it is computationally intractable to construct uniform designs, even for moderate number of runs, factors and levels. We establish a linear relationship between average squared centered L2-discrepancy and generalized wordlength pattern, and then based on it, we propose a general method for constructing uniform designs with arbitrary number of levels. The main idea is to choose a generalized minimum aberration design and then permute its levels. We propose a novel stochastic algorithm and obtain many new uniform designs that have smaller centered L2-discrepancies than the existing ones.  相似文献   

16.
The main theorem of this paper shows that foldover designs are the only (regular or nonregular) two-level factorial designs of resolution IV (strength 3) or more for n   runs and n/3?m?n/2n/3?m?n/2 factors. This theorem is a generalization of a coding theory result of Davydov and Tombak [1990. Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry. Problems Inform. Transmission 25, 265–275] which, under translation, effectively states that foldover (or even) designs are the only regular two-level factorial designs of resolution IV or more for n   runs and 5n/16?m?n/25n/16?m?n/2 factors. This paper also contains other theorems including an alternative proof of Davydov and Tombak's result.  相似文献   

17.
A multidimensional block design (MBD) is an experimental design with d > 1 blocking criteria geometrically represented as a d-dimensional lattice with treatment varieties assigned to some or all nodes of the lattice. Intrablock analysis of variance tables for some special classes of two- and three-dimensional block designs with some empty nodes are given. Design plans and efficiencies for 31 two-dimensional designs, each universally optimal in defined classes of designs, and 7 three-dimensional designs, each nearly optimal in defined classes of designs, are listed in the appendices. A need for such designs is apparent when the blocking criteria are implemented successively and empty nodes do not represent wasted experimental units.  相似文献   

18.
Youden hyperrectangles are higher-dimensional generalizations of balanced block designs and generalized Youden designs. This kind of design has been shown to be optimal for the elimination of multi-way heterogeneity. In this paper, patchwork and geometric methods are combined to construct Youden hyperrectangles for many parameter values.  相似文献   

19.
The problem of comparing v test treatments simultaneously with a control treatment when k, v ⩾ 3 is considered. Following the work of Majumdar (1992), we use exact design theory to derive Bayes A-optimal block designs and optimal Г-minimax designs for a more general prior assumption for the one-way elimination of heterogeneity model. Examples of robust optimal designs, highly efficient designs, and the comparisons of the approximate optimal designs that are derived by our methods and by some other existing rounding-off schemes when using Owen's procedure are also provided.  相似文献   

20.
The development of a general methodology for the construction of good two-level nonregular designs has received significant attention over the last 10 years. Recent works by Phoa and Xu (2009) and Zhang et al. (2011) indicate that quaternary code (QC) designs are very promising in this regard. This paper explores a systematic construction for 1/8th and 1/16th fraction QC designs with high resolution for any number of factors. The 1/8th fraction QC designs often have larger resolution than regular designs of the same size. A majority of the 1/16th fraction QC designs also have larger resolution than comparable two-level regular designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号