共查询到20条相似文献,搜索用时 0 毫秒
1.
Christopher H. Jackson Simon G. Thompson Linda D. Sharples 《Journal of the Royal Statistical Society. Series A, (Statistics in Society)》2009,172(2):383-404
Summary. Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment. 相似文献
2.
Sally Wood Robert Kohn Tom Shively & Wenxin Jiang 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2002,64(1):119-139
A Bayesian approach is presented for model selection in nonparametric regression with Gaussian errors and in binary nonparametric regression. A smoothness prior is assumed for each component of the model and the posterior probabilities of the candidate models are approximated using the Bayesian information criterion. We study the model selection method by simulation and show that it has excellent frequentist properties and gives improved estimates of the regression surface. All the computations are carried out efficiently using the Gibbs sampler. 相似文献
3.
The variational approach to Bayesian inference enables simultaneous estimation of model parameters and model complexity. An interesting feature of this approach is that it also leads to an automatic choice of model complexity. Empirical results from the analysis of hidden Markov models with Gaussian observation densities illustrate this. If the variational algorithm is initialized with a large number of hidden states, redundant states are eliminated as the method converges to a solution, thereby leading to a selection of the number of hidden states. In addition, through the use of a variational approximation, the deviance information criterion for Bayesian model selection can be extended to the hidden Markov model framework. Calculation of the deviance information criterion provides a further tool for model selection, which can be used in conjunction with the variational approach. 相似文献
4.
In this work the Schwarz Inforamtion Criterion (SIC) is used in order to locate a change-point in linear regression models
with independent errors distributed according to the Student-t distribution. The methodology is applied to data sets from the financial area. 相似文献
5.
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a Bayesian information criterion (BIC)-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure. 相似文献
6.
In this article we consider the problem of detecting changes in level and trend in time series model in which the number of change-points is unknown. The approach of Bayesian stochastic search model selection is introduced to detect the configuration of changes in a time series. The number and positions of change-points are determined by a sequence of change-dependent parameters. The sequence is estimated by its posterior distribution via the maximum a posteriori (MAP) estimation. Markov chain Monte Carlo (MCMC) method is used to estimate posterior distributions of parameters. Some actual data examples including a time series of traffic accidents and two hydrological time series are analyzed. 相似文献
7.
This paper is concerned with the problem of constructing a good predictive distribution relative to the Kullback–Leibler information in a linear regression model. The problem is equivalent to the simultaneous estimation of regression coefficients and error variance in terms of a complicated risk, which yields a new challenging issue in a decision-theoretic framework. An estimator of the variance is incorporated here into a loss for estimating the regression coefficients. Several estimators of the variance and of the regression coefficients are proposed and shown to improve on usual benchmark estimators both analytically and numerically. Finally, the prediction problem of a distribution is noted to be related to an information criterion for model selection like the Akaike information criterion (AIC). Thus, several AIC variants are obtained based on proposed and improved estimators and are compared numerically with AIC as model selection procedures. 相似文献
8.
A model selection approach for the identification of quantitative trait loci in experimental crosses
Karl W. Broman Terence P. Speed 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2002,64(4):641-656
Summary. We consider the problem of identifying the genetic loci (called quantitative trait loci (QTLs)) contributing to variation in a quantitative trait, with data on an experimental cross. A large number of different statistical approaches to this problem have been described; most make use of multiple tests of hypotheses, and many consider models allowing only a single QTL. We feel that the problem is best viewed as one of model selection. We discuss the use of model selection ideas to identify QTLs in experimental crosses. We focus on a back-cross experiment, with strictly additive QTLs, and concentrate on identifying QTLs, considering the estimation of their effects and precise locations of secondary importance. We present the results of a simulation study to compare the performances of the more prominent methods. 相似文献
9.
Tom Burr Herb Fry Brian McVey Eric Sander Joseph Cavanaugh Andrew Neath 《统计学通讯:模拟与计算》2013,42(3):507-520
The Bayesian information criterion (BIC) is widely used for variable selection. We focus on the regression setting for which variations of the BIC have been proposed. A version that includes the Fisher Information matrix of the predictor variables performed best in one published study. In this article, we extend the evaluation, introduce a performance measure involving how closely posterior probabilities are approximated, and conclude that the version that includes the Fisher Information often favors regression models having more predictors, depending on the scale and correlation structure of the predictor matrix. In the image analysis application that we describe, we therefore prefer the standard BIC approximation because of its relative simplicity and competitive performance at approximating the true posterior probabilities. 相似文献
10.
Bayesian measures of model complexity and fit 总被引:7,自引:0,他引:7
David J. Spiegelhalter Nicola G. Best Bradley P. Carlin Angelika van der Linde 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2002,64(4):583-639
Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure p D for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general p D approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the 'hat' matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding p D to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis. 相似文献
11.
《Journal of Statistical Computation and Simulation》2012,82(8):1667-1678
We propose a new iterative algorithm, called model walking algorithm, to the Bayesian model averaging method on the longitudinal regression models with AR(1) random errors within subjects. The Markov chain Monte Carlo method together with the model walking algorithm are employed. The proposed method is successfully applied to predict the progression rates on a myopia intervention trial in children. 相似文献
12.
Kosei Fukuda 《Journal of applied statistics》2010,37(7):1123-1135
A new method for detecting the parameter changes in generalized autoregressive heteroskedasticity GARCH (1,1) model is proposed. In the proposed method, time series observations are divided into several segments and a GARCH (1,1) model is fitted to each segment. The goodness-of-fit of the global model composed of these local GARCH (1,1) models is evaluated using the corresponding information criterion (IC). The division that minimizes IC defines the best model. Furthermore, since the simultaneous estimation of all possible models requires huge computational time, a new time-saving algorithm is proposed. Simulation results and empirical results both indicate that the proposed method is useful in analysing financial data. 相似文献
13.
According to investigated topic in the context of optimal designs, various methods can be used to obtain optimal design, of which Bayesian method is one. In this paper, considering the model and the features of the information matrix, this method (Bayesian optimality criterion) has been used for obtaining optimal designs which due to the variation range of the model parameters, prior distributions such as Uniform, Normal and Exponential have been used and the results analysed. 相似文献
14.
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based
on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class
of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming
normal and t-distributions). We compare their performance with the more common maximum likelihood-based model selection for
simulated and real market data. All five MCMC methods proved reliable in the simulation study, although differing in their
computational demands. Results on simulated data also show that for large degrees of freedom (where the t-distribution becomes
more similar to a normal one), Bayesian model selection results in better decisions in favor of the true model than maximum
likelihood. Results on market data show the instability of the harmonic mean estimator and reliability of the advanced model
selection methods. 相似文献
15.
The standard methods for analyzing data arising from a ‘thorough QT/QTc study’ are based on multivariate normal models with common variance structure for both drug and placebo. Such modeling assumptions may be violated and when the sample sizes are small, the statistical inference can be sensitive to such stringent assumptions. This article proposes a flexible class of parametric models to address the above‐mentioned limitations of the currently used models. A Bayesian methodology is used for data analysis and models are compared using the deviance information criteria. Superior performance of the proposed models over the current models is illustrated through a real dataset obtained from a GlaxoSmithKline (GSK) conducted ‘thorough QT/QTc study’. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
In the economics and biological gene expression study area where a large number of variables will be involved, even when the predictors are independent, as long as the dimension is high, the maximum sample correlation can be large. Variable selection is a fundamental method to deal with such models. The ridge regression performs well when the predictors are highly correlated and some nonconcave penalized thresholding estimators enjoy the nice oracle property. In order to provide a satisfactory solution to the collinearity problem, in this paper we report the combined-penalization (CP) mixed by the nonconcave penalty and ridge, with a diverging number of parameters. It is observed that the CP estimator with a diverging number of parameters can correctly select covariates with nonzero coefficients and can estimate parameters simultaneously in the presence of multicollinearity. Simulation studies and a real data example demonstrate the well performance of the proposed method. 相似文献
17.
Sharmishtha Mitra 《Journal of applied statistics》2014,41(4):853-878
In this paper, we consider the problem of estimating the number of components of a superimposed nonlinear sinusoids model of a signal in the presence of additive noise. We propose and provide a detailed empirical comparison of robust methods for estimation of the number of components. The proposed methods, which are robust modifications of the commonly used information theoretic criteria, are based on various M-estimator approaches and are robust with respect to outliers present in the data and heavy-tailed noise. The proposed methods are compared with the usual non-robust methods through extensive simulations under varied model scenarios. We also present real signal analysis of two speech signals to show the usefulness of the proposed methodology. 相似文献
18.
We revisit the complete clinic visit records and environmental monitoring data at 50 townships and city districts of Taiwan. Extending the earlier analyses, here we consider a Bayesian analysis using Daubechies wavelet. Appropriate model selection is also considered using Bayesian model averaging. Temperature, dew point, and NO2 and CO of the current day and the previous day are identified as the pollutants in different areas of the island following some spatial pattern. 相似文献
19.
In this article, we consider two different shared frailty regression models under the assumption of Gompertz as baseline distribution. Mostly assumption of gamma distribution is considered for frailty distribution. To compare the results with gamma frailty model, we consider the inverse Gaussian shared frailty model also. We compare these two models to a real life bivariate survival data set of acute leukemia remission times (Freireich et al., 1963). Analysis is performed using Markov Chain Monte Carlo methods. Model comparison is made using Bayesian model selection criterion and a well-fitted model is suggested for the acute leukemia data. 相似文献
20.
Nikita A. Moiseev 《Journal of Statistical Computation and Simulation》2017,87(16):3111-3131
This paper presents an extension of mean-squared forecast error (MSFE) model averaging for integrating linear regression models computed on data frames of various lengths. Proposed method is considered to be a preferable alternative to best model selection by various efficiency criteria such as Bayesian information criterion (BIC), Akaike information criterion (AIC), F-statistics and mean-squared error (MSE) as well as to Bayesian model averaging (BMA) and naïve simple forecast average. The method is developed to deal with possibly non-nested models having different number of observations and selects forecast weights by minimizing the unbiased estimator of MSFE. Proposed method also yields forecast confidence intervals with a given significance level what is not possible when applying other model averaging methods. In addition, out-of-sample simulation and empirical testing proves efficiency of such kind of averaging when forecasting economic processes. 相似文献