首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We provide a new necessary and sufficient check for testing the isomorphism of two 2-level regular fractional factorial designs. The approach is based on modeling fractional factorial designs as bipartite graphs. We employ an efficient canonical graph labeling approach to compare two designs for isomorphism. We then improve upon the existing non-isomorphic fractional factorial design generation algorithm by reducing the number of candidate designs from which isomorphs need to be removed. Not only does our method generate non-isomorphic designs much faster, it is also able to generate designs with run sizes of 2048 and 4096 runs, which were not generated by the existing methods.  相似文献   

2.
Summary.  When it is impractical to perform the experimental runs of a fractional factorial design in a completely random order, restrictions on the randomization can be imposed. The resulting design is said to have a split-plot, or nested, error structure. Similarly to fractional factorials, fractional factorial split-plot designs can be ranked by using the aberration criterion. Techniques that generate the required designs systematically presuppose unreplicated settings of the whole-plot factors. We use a cheese-making experiment to demonstrate the practical relevance of designs with replicated settings of these factors. We create such designs by splitting the whole plots according to one or more subplot effects. We develop a systematic method to generate the required designs and we use the method to create a table of designs that is likely to be useful in practice.  相似文献   

3.
It is well known that Yates' algorithm can be used to estimate the effects in a factorial design. We develop a modification of this algorithm and call it modified Yates' algorithm and its inverse. We show that the intermediate steps in our algorithm have a direct interpretation as estimated level-specific mean values and effects. Also we show how Yates' or our modified algorithm can be used to construct the blocks in a 2 k factorial design and to generate the layout sheet of a 2 k−p fractional factorial design and the confounding pattern in such a design. In a final example we put together all these methods by generating and analysing a 26-2 design with 2 blocks.  相似文献   

4.
We consider a balanced fractional 2m factorial design of resolution 2?+1 which permits estimation of all factorial effects up through ?-factor interactions under the situation in which all (?+1)-factor and higher order interactions are to be negligible for an integer satisfying [m/2]<lE;?m, where [x] denotes the greatest integer not exceeding x. This paper investigates algebraic structure of the information matrix of such a design derived from a simple array through that of an atomic array. We obtain an explicit expression for the irreducible matrix representation based on the above design and its algebraic properties. The results in this paper will be useful to characterize the designs under consideration.  相似文献   

5.
We consider a fractional 3m factorial design derived from a simple array (SA) such that the non negligible factorial effects are the general mean, the linear and the quadratic components of the main effect, and the linear-by-linear and the linear-by-quadratic components of the two-factor interaction. If these effects are estimable, then a design is said to be of resolution R({00, 10, 01, 20, 11}). In this paper, we give a necessary and sufficient condition for an SA to be a balanced fractional 3m factorial design of resolution R({00, 10, 01, 20, 11}). Such a design is concretely characterized by the suffixes of the indices of an SA.  相似文献   

6.
The generalized wordlength pattern (GWLP) introduced by Xu and Wu [2001. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29, 1066–1077] for an arbitrary fractional factorial design allows one to extend the use of the minimum aberration criterion to such designs. Ai and Zhang [2004. Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs. Metrika 60, 279–285] defined the JJ-characteristics of a design and showed that they uniquely determine the design. While both the GWLP and the JJ-characteristics require indexing the levels of each factor by a cyclic group, we see that the definitions carry over with appropriate changes if instead one uses an arbitrary abelian group. This means that the original definitions rest on an arbitrary choice of group structure. We show that the GWLP of a design is independent of this choice, but that the JJ-characteristics are not. We briefly discuss some implications of these results.  相似文献   

7.
We consider a fractional 2m factorial design derived from a simple array (SA) such that the (? + 1)-factor and higher-order interactions are negligible, where 2? ? m. The purpose of this article is to give a necessary and sufficient condition for an SA to be a balanced fractional 2m factorial design of resolution 2? + 1. Such a design is concretely characterized by the suffixes of the indices of an SA.  相似文献   

8.
We consider a fractional 3 m factorial design derived from a simple array (SA), which is a balanced array of full strength, where the non negligible factorial effects are the general mean and the linear and quadratic components of the main effect, and m ≥ 2. In this article, we give a necessary and sufficient condition for an SA to be a balanced fractional 3 m factorial design of resolution III. Such a design is characterized by the suffixes of indices of an SA.  相似文献   

9.
Combinatorial extension and composition methods have been extensively used in the construction of block designs. One of the composition methods, namely the direct product or Kronecker product method was utilized by Chakravarti [1956] to produce certain types of fractional factorial designs. The present paper shows how the direct sum operation can be utilized in obtaining from initial fractional factorial designs for two separate symmetrical factorials a fractional factorial design for the corresponding asymmetrical factorial. Specifically, we provide some results which are useful in the construction of non-singular fractional factorial designs via the direct sum composition method. In addition a modified direct sum method is discussed and the consequences of imposing orthogonality are explored.  相似文献   

10.
In this article, we explore the connection between Conjoint Analysis (CA) and a recent theory for minimum size orthogonal fractional factorial design generation (Fontana, 2013 Fontana , R. ( 2013 ). Algebraic generation of minimum size orthogonal fractional factorial designs: an approach based on integer linear programming . Computat. Statist. 28 : 241253 .[Crossref], [Web of Science ®] [Google Scholar]).

We show how searching for a minimum size OFFD that satisfies a set of constraints, expressed in terms of orthogonality between simple and interaction effects, is equivalent to solving an integer linear programming problem. It is worth noting that the methodology puts no restriction either on the number of levels of each factor or on the orthogonality constraints and so it can be applied to a very wide range of designs, including mixed orthogonal arrays. An algorithm, that has been implemented in SAS/IML, is briefly described.

The use of this algorithm during the design stage of a generic CA is shown in two applications.  相似文献   

11.
It is known that for blocked 2n-k2n-k designs a judicious sequencing of blocks may allow one to obtain early and insightful results regarding influential parameters in the experiment. Such findings may justify the early termination of the experiment thereby producing cost and time savings. This paper introduces an approach for selecting the optimal sequence of blocks for regular two-level blocked fractional factorial split-plot screening experiments. An optimality criterion is developed so as to give priority to the early estimation of low-order factorial effects. This criterion is then applied to the minimum aberration blocked fractional factorial split-plot designs tabled in McLeod and Brewster [2004. The design of blocked fractional factorial split-plot experiments. Technometrics 46, 135–146]. We provide a catalog of optimal block sequences for 16 and 32-run minimum aberration blocked fractional factorial split-plot designs run in either 4 or 8 blocks.  相似文献   

12.
Several criteria have been proposed for ranking blocked fractional factorial designs. For large fractional factorial designs, the most appropriate minimum aberration criterion was one proposed by Cheng and Wu (2002). We justify this assertion and propose a novel construction method to overcome the computational challenge encountered in large fractional factorial designs. Tables of minimum aberration blocked designs are presented for N=128 runs and n=8–64 factors.  相似文献   

13.
Two-level regular fractional factorial designs are often used in industry as screening designs to help identify early on in an experimental process those experimental or system variables which have significant effects on the process being studied. When the experimental material to be used in the experiment is heterogenous or the experiment must be performed over several well-defined time periods, blocking is often used as a means to improve experimental efficiency by removing the possible effects of heterogenous experimental material or possible time period effects. In a recent article, Li and Jacroux (2007 Li , F. , Jacroux , M. (2007). Optimal foldover plans for blocked 2 m?k fractional factorial designs. J. Statsist. Plann. Infer 137:24342452. [Google Scholar]) suggested a strategy for constructing optimal follow-up designs for blocked fractional factorial designs using the well-known foldover technique in conjunction with several optimality criteria. In this article, we consider the reverse foldover problem for blocked fractional factorial designs. In particular, given a 2(m+p)?(p+k) blocked fractional factorial design D, we derive simple sufficient conditions which can be used to determine if there exists a 2(m+p?1)?(p?1+k+1) initial fractional factorial design d which yields D as a foldover combined design as well how to generate all such d. Such information is useful in developing an overall experimental strategy in situations where an experimenter wants an overall blocked fractional factorial design with “desirable” properties but also wants the option of analyzing the observed data at the halfway mark to determine if the significant experimental variables are obvious (and the experiment can be terminated) or if a different path of experimentation should be taken from that initially planned.  相似文献   

14.
Box and Meyer [1986. Dispersion effects from fractional designs. Technometrics 28(1), 19–27] were the first to consider identifying both location and dispersion effects from unreplicated two-level fractional factorial designs. Since the publication of their paper a number of different procedures (both iterative and non-iterative) have been proposed for estimating the location and dispersion effects. An overview and a critical analysis of most of these procedures is given by Brenneman and Nair [2001. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43(4), 388–405]. Under a linear structure for the dispersion effects, non-iterative estimation methods for the dispersion effects were proposed by Brenneman and Nair [2001. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43(4), 388–405], Liao and Iyer [2000. Optimal 2n-p2n-p fractional factorial designs for dispersion effects under a location-dispersion model. Comm. Statist. Theory Methods 29(4), 823–835] and Wiklander [1998. A comparison of two estimators of dispersion effects. Comm. Statist. Theory Methods 27(4), 905–923] (see also Wiklander and Holm [2003. Dispersion effects in unreplicated factorial designs. Appl. Stochastic. Models Bus. Ind. 19(1), 13–30]). We prove that for two-level factorial designs the proposed estimators are different representations of a single estimator. The proof uses the framework of Seely [1970a. Linear spaces and unbiased estimation. Ann. Math. Statist. 41, 1725–1734], in which quadratic estimators are expressed as inner products of symmetric matrices.  相似文献   

15.
A Latin square of order s is an arrangement of the s letters in an s × s square so that every letter appears exactly once in every row and exactly once in every column. Copeland and Nelson (2000) used two examples to show that a Latin square can be chosen such that it corresponds to a fractional factorial design. In this article, we are going to study this topic more precisely. Furthermore, we will explore the relationship between fractional factorial designs and hyper-Graeco-Latin squares in general, where s is a prime or a power of a prime.  相似文献   

16.
The concepts of defining contrast (DC), generalized defining relationship (GDR) and aliasing structure (AS) are now well established in the terminology of regression analysis and factorial design theory. There is no complete agreement in the literature about the meaning of regular and irregular fractional factorial designs. This paper provides a workable definition of a regular fraction from a symmetrial prime-powered factorial. It characterizes the uniqueness of the GDR for fractions from the most general factorial. Results are also présentés on the uniqueness of the GDR for regular designs, on orthogonality aspects of regular and irregular designs, and on group-theoretic generation of the complete aliasing structure. Examples are provided to illustrate the developments.  相似文献   

17.
In this article, we consider experimental situations where a blocked regular two-level fractional factorial initial design is used. We investigate the use of the semi-fold technique as a follow-up strategy for de-aliasing effects that are confounded in the initial design as well as an alternative method for constructing blocked fractional factorial designs. A construction method is suggested based on the full foldover technique and sufficient conditions are obtained when the semi-fold yields as many estimable effects as the full foldover.  相似文献   

18.
In industry, experiments are often conducted sequentially due to equipment limitations dictating that only one or two simultaneous runs may be made. In this situation, early termination of the experiment results in missing points, leading to a loss in efficiency or, worse, to a singular subdesign with nonestimable model parameters. We investigate the specific problem of singularity when two points are lost from a factorial design based on n two-level factors. The method is based on the inner products of the coordinate vectors of the omitted design points and leads to some results on the nonexistence of fractional factorial designs.  相似文献   

19.
We discuss the applications of algebraic statistics to fractional factorial design with special emphasis on the choice of level coding. In particular, we deal with the theory of Bayley's level codings in that framework.  相似文献   

20.
A supersaturated design is essentially a fractional factorial design whose number of experimental variables is greater than or equal to its number of experimental runs. Under the effect sparsity assumption, a supersaturated design can be very cost-effective. In this paper, our prime objective is to compare the existing two-level supersaturated designs for the noisy case through the probability of correct searching—a powerful criterion proposed by Shirakura et al. [1996. Searching probabilities for nonzeroeffects in search designs for the noisy case. Ann. Statist. 24, 2560–2568]. An algorithm is proposed to construct supersaturated designs with high probability of correct searching. Examples are given for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号