首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In modern oncology drug development, adaptive designs have been proposed to identify the recommended phase 2 dose. The conventional dose finding designs focus on the identification of maximum tolerated dose (MTD). However, designs ignoring efficacy could put patients under risk by pushing to the MTD. Especially in immuno-oncology and cell therapy, the complex dose-toxicity and dose-efficacy relationships make such MTD driven designs more questionable. Additionally, it is not uncommon to have data available from other studies that target on similar mechanism of action and patient population. Due to the high variability from phase I trial, it is beneficial to borrow historical study information into the design when available. This will help to increase the model efficiency and accuracy and provide dose specific recommendation rules to avoid toxic dose level and increase the chance of patient allocation at potential efficacious dose levels. In this paper, we propose iBOIN-ET design that uses prior distribution extracted from historical studies to minimize the probability of decision error. The proposed design utilizes the concept of skeleton from both toxicity and efficacy data, coupled with prior effective sample size to control the amount of historical information to be incorporated. Extensive simulation studies across a variety of realistic settings are reported including a comparison of iBOIN-ET design to other model based and assisted approaches. The proposed novel design demonstrates the superior performances in percentage of selecting the correct optimal dose (OD), average number of patients allocated to the correct OD, and overdosing control during dose escalation process.  相似文献   

2.
Historically early phase oncology drug development programmes have been based on the belief that “more is better”. Furthermore, rule-based study designs such as the “3 + 3” design are still often used to identify the MTD. Phillips and Clark argue that newer Bayesian model-assisted designs such as the BOIN design should become the go to designs for statisticians for MTD finding. This short communication goes one stage further and argues that Bayesian model-assisted designs such as the BOIN12 which balances risk-benefit should be included as one of the go to designs for early phase oncology trials, depending on the study objectives. Identifying the optimal biological dose for future research for many modern targeted drugs, immunotherapies, cell therapies and vaccine therapies can save significant time and resources.  相似文献   

3.
Ⅰ期临床试验的主要目的是探索药物毒性最大耐受剂量MTD,而MTD估计的准确与否将影响之后的Ⅱ期和Ⅲ期临床试验研究的结果.抗肿瘤药物Ⅰ期试验的特点是直接对病人进行试验,且样本量较小,这对构造估计精确度高并具有安全性保障要求的统计设计方法提出了挑战.回顾三种常用的Ⅰ期试验设计方法有:3+3设计、CRM设计和mTPI设计.3+3设计是应用较为广泛的传统方法,后两者是当前常用的贝叶斯自适应试验设计方法.通过大量模拟研究对三种方法从最优分配、安全性和估计MTD精确性三方面给以全面考察,并结合中国实际得出mTPI设计是比较适合推荐的Ⅰ期临床试验设计方法的结论.  相似文献   

4.
Designing Phase I clinical trials is challenging when accrual is slow or sample size is limited. The corresponding key question is: how to efficiently and reliably identify the maximum tolerated dose (MTD) using a sample size as small as possible? We propose model-assisted and model-based designs with adaptive intrapatient dose escalation (AIDE) to address this challenge. AIDE is adaptive in that the decision of conducting intrapatient dose escalation depends on both the patient's individual safety data, as well as other enrolled patient's safety data. When both data indicate reasonable safety, a patient may perform intrapatient dose escalation, generating toxicity data at more than one dose. This strategy not only provides patients the opportunity to receive higher potentially more effective doses, but also enables efficient statistical learning of the dose-toxicity profile of the treatment, which dramatically reduces the required sample size. Simulation studies show that the proposed designs are safe, robust, and efficient to identify the MTD with a sample size that is substantially smaller than conventional interpatient dose escalation designs. Practical considerations are provided and R code for implementing AIDE is available upon request.  相似文献   

5.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Drug-combination studies have become increasingly popular in oncology. One of the critical concerns in phase I drug-combination trials is the uncertainty in toxicity evaluation. Most of the existing phase I designs aim to identify the maximum tolerated dose (MTD) by reducing the two-dimensional searching space to one dimension via a prespecified model or splitting the two-dimensional space into multiple one-dimensional subspaces based on the partially known toxicity order. Nevertheless, both strategies often lead to complicated trials which may either be sensitive to model assumptions or induce longer trial durations due to subtrial split. We develop two versions of dynamic ordering design (DOD) for dose finding in drug-combination trials, where the dose-finding problem is cast in the Bayesian model selection framework. The toxicity order of dose combinations is continuously updated via a two-dimensional pool-adjacent-violators algorithm, and then the dose assignment for each incoming cohort is selected based on the optimal model under the dynamic toxicity order. We conduct extensive simulation studies to evaluate the performance of DOD in comparison with four other commonly used designs under various scenarios. Simulation results show that the two versions of DOD possess competitive performances in terms of correct MTD selection as well as safety, and we apply both versions of DOD to two real oncology trials for illustration.  相似文献   

7.
Designs for early phase dose finding clinical trials typically are either phase I based on toxicity, or phase I-II based on toxicity and efficacy. These designs rely on the implicit assumption that the dose of an experimental agent chosen using these short-term outcomes will maximize the agent's long-term therapeutic success rate. In many clinical settings, this assumption is not true. A dose selected in an early phase oncology trial may give suboptimal progression-free survival or overall survival time, often due to a high rate of relapse following response. To address this problem, a new family of Bayesian generalized phase I-II designs is proposed. First, a conventional phase I-II design based on short-term outcomes is used to identify a set of candidate doses, rather than selecting one dose. Additional patients then are randomized among the candidates, patients are followed for a predefined longer time period, and a final dose is selected to maximize the long-term therapeutic success rate, defined in terms of duration of response. Dose-specific sample sizes in the randomization are determined adaptively to obtain a desired level of selection reliability. The design was motivated by a phase I-II trial to find an optimal dose of natural killer cells as targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic malignancies. A simulation study shows that, under a range of scenarios in the context of this trial, the proposed design has much better performance than two conventional phase I-II designs.  相似文献   

8.
We consider the problem of how to efficiently and safely design dose finding studies. Both current and novel utility functions are explored using Bayesian adaptive design methodology for the estimation of a maximum tolerated dose (MTD). In particular, we explore widely adopted approaches such as the continual reassessment method and minimizing the variance of the estimate of an MTD. New utility functions are constructed in the Bayesian framework and are evaluated against current approaches. To reduce computing time, importance sampling is implemented to re-weight posterior samples thus avoiding the need to draw samples using Markov chain Monte Carlo techniques. Further, as such studies are generally first-in-man, the safety of patients is paramount. We therefore explore methods for the incorporation of safety considerations into utility functions to ensure that only safe and well-predicted doses are administered. The amalgamation of Bayesian methodology, adaptive design and compound utility functions is termed adaptive Bayesian compound design (ABCD). The performance of this amalgamation of methodology is investigated via the simulation of dose finding studies. The paper concludes with a discussion of results and extensions that could be included into our approach.  相似文献   

9.
Recently, the US Food and Drug Administration Oncology Center of Excellence initiated Project Optimus to reform the dose optimization and dose selection paradigm in oncology drug development. The agency pointed out that the current paradigm for dose selection—based on the maximum tolerated dose (MTD)—is not sufficient for molecularly targeted therapies and immunotherapies, for which efficacy may not increase after the dose reaches a certain level. In these cases, it is more appropriate to identify the optimal biological dose (OBD) that optimizes the risk–benefit tradeoff of the drug. Project Optimus has spurred tremendous interest and urgent need for guidance on designing dose optimization trials. In this article, we review several representative dose optimization designs, including model-based and model-assisted designs, and compare their operating characteristics based on 10,000 randomly generated scenarios with various dose-toxicity and dose-efficacy curves and some fixed representative scenarios. The results show that, compared with model-based designs, model-assisted methods have advantages of easy-to-implement, robustness, and high accuracy to identify OBD. Some guidance is provided to help biostatisticians and clinicians to choose appropriate dose optimization methods in practice.  相似文献   

10.
This article proposes an extension of the continual reassessment method to determine the maximum tolerated dose (MTD) in the presence of patients' heterogeneity in phase I clinical trials. To start with a simple case, we consider the covariate as a binary variable representing two groups of patients. A logistic regression model is used to establish the dose–response relationship and the design is based on the Bayesian framework. Simulation studies for six plausible dose–response scenarios show that the proposed design is likely to determine the MTD more accurately than the design that does not take covariate into consideration.  相似文献   

11.
Nowadays, treatment regimens for cancer often involve a combination of drugs. The determination of the doses of each of the combined drugs in phase I dose escalation studies poses methodological challenges. The most common phase I design, the classic ‘3+3' design, has been criticized for poorly estimating the maximum tolerated dose (MTD) and for treating too many subjects at doses below the MTD. In addition, the classic ‘3+3' is not able to address the challenges posed by combinations of drugs. Here, we assume that a control drug (commonly used and well‐studied) is administered at a fixed dose in combination with a new agent (the experimental drug) of which the appropriate dose has to be determined. We propose a randomized design in which subjects are assigned to the control or to the combination of the control and experimental. The MTD is determined using a model‐based Bayesian technique based on the difference of probability of dose limiting toxicities (DLT) between the control and the combination arm. We show, through a simulation study, that this approach provides better and more accurate estimates of the MTD. We argue that this approach may differentiate between an extreme high probability of DLT observed from the control and a high probability of DLT of the combination. We also report on a fictive (simulation) analysis based on published data of a phase I trial of ifosfamide combined with sunitinib.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The Escalation with Overdose Control (EWOC) design for cancer dose finding clinical trials is a variation of the Continual Reassessment Method (CRM) that was proposed to overcome the limitation of the original CRM of exposing patients to high toxic doses. The properties of EWOC have been studied to some extent, but some aspects of the design are not well studied, and its performance is not fully understood. Comparisons of the EWOC design to the most commonly used modified CRM designs have not yet been performed, and the advantages of EWOC over the modified CRM designs are unclear. In this paper, we assess the properties of the EWOC design and of the restricted CRM and some variations of these designs. We show that EWOC has several weaknesses that CRM does not have that make it impractical to use in its original formulation. We propose modified EWOC designs that address some of the weaknesses and that have some desirable statistical properties compared with the original EWOC design, the restricted CRM design, and the 3 + 3 design. However, their statistical properties are sensitive to correct specification of the prior distribution of their parameters and hence nevertheless will need to be used with some caution. The restricted CRM design is shown to have more stable performance across a wider family of dose‐toxicity curves than EWOC and therefore may be a preferable general choice in cancer clinical research.  相似文献   

13.
The main goal of phase I cancer clinical trials is to determine the highest dose of a new therapy associated with an acceptable level of toxicity for the use in a subsequent phase II trial. The continual reassessment method (CRM) [O’Quigley, J., Pepe, M., Fisher, L., 1990. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 46, 33–48] and escalation with overdose control (EWOC) [Babb, J., Rogatko, A., Zacks, S., 1998. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statist. Med. 17 (10), 1103–1120] are two model-based designs used for phase I cancer clinical trials. A few modifications of the (original) CRM and EWOC have been made by many authors. In this paper, we show how CRM and EWOC can be unified and present a hybrid design. We study the characteristics of the approach of the hybrid design. The comparisons of the three designs (CRM, EWOC, and the hybrid design) are presented by convergence rates and overdose proportions. The simulation results show that the hybrid design generally has faster convergence rates than EWOC and smaller overdose proportions than CRM, especially when the true maximum tolerated dose (MTD) is above the mid-level of the dose range considered. The performance of these three designs is also evaluated in terms of sensitivity to outliers.  相似文献   

14.
In early phase dose‐finding cancer studies, the objective is to determine the maximum tolerated dose, defined as the highest dose with an acceptable dose‐limiting toxicity rate. Finding this dose for drug‐combination trials is complicated because of drug–drug interactions, and many trial designs have been proposed to address this issue. These designs rely on complicated statistical models that typically are not familiar to clinicians, and are rarely used in practice. The aim of this paper is to propose a Bayesian dose‐finding design for drug combination trials based on standard logistic regression. Under the proposed design, we continuously update the posterior estimates of the model parameters to make the decisions of dose assignment and early stopping. Simulation studies show that the proposed design is competitive and outperforms some existing designs. We also extend our design to handle delayed toxicities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities.  相似文献   

16.
Cubic lattices     
In some experiments, the problem is to compare many unstructured treatments in small blocks, the classical example being the study of new plant varieties on variable land. A common method is to use lattice designs, i.e. block designs based upon rows and columns of a square format, with ficrther replicates being formed, required, from orthogonal squares applied to the format. It has been known for some time that cubes can be used instead; this paper sets out to explore the possibilities. There are two cases. In one case, the blocks are formed from the planes of the cube and, in the other case, from its lines. The cubic lattice basically has three replicates-one from each dimension-but, two or four replicates are required, a design can be found by omitting or duplicating one of the dimensions. Where standard treatments need to be introduced, -a useful device is to reinforce, i.e. supplement each block with additional plots of standards, with each block of a replicate being supplemented in the same way. These possibilities are examined. It emerges that cubic lattices with two or three replicates usefully extend the range of available designs, but that those with four replicates are disappointing. However, there is the alternative of using designs based upon Latin cubes. This matter is not taken far but it is shown that, where the Latin cube exists, it gives a better design. A quick way of calculating an approximate analysis of variance is given, which is applicable in a wide range of cases.  相似文献   

17.
T-cell engagers are a class of oncology drugs which engage T-cells to initiate immune response against malignant cells. T-cell engagers have features that are unlike prior classes of oncology drugs (e.g., chemotherapies or targeted therapies), because (1) starting dose level often must be conservative due to immune-related side effects such as cytokine release syndrome (CRS); (2) dose level can usually be safely titrated higher as a result of subject's immune system adaptation after first exposure to lower dose; and (3) due to preventive management of CRS, these safety events rarely worsen to become dose limiting toxicities (DLTs). It is generally believed that for T-cell engagers the dose intensity of the starting dose and the peak dose intensity both correlate with improved efficacy. Existing dose finding methodologies are not designed to efficiently identify both the initial starting dose and peak dose intensity in a single trial. In this study, we propose a new trial design, dose intra-subject escalation to an event (DIETE) design, that can (1) estimate the maximum tolerated initial dose level (MTD1); and (2) incorporate systematic intra-subject dose-escalation to estimate the maximum tolerated dose level subsequent to adaptation induced by the initial dose level (MTD2) with a survival analysis approach. We compare our framework to similar methodologies and evaluate their key operating characteristics.  相似文献   

18.
In response surface methodology, designs of orders one or two are often needed such that some or all the factor levels satisfy one or more linear constraints. A method is discussed for obtaining such designs by projection of a standard design onto the constraint hyperplane. It is shown that a projected design obtained from a rotatable design is also rotatable, and for a rotatable design that is also orthogonal (in particular any orthogonal first-order design) a least squares analysis carried out on the generating design supplies a least squares solution for the constrained design subject to the constraints. Some useful properties of the generating design, such as orthogonal blocking and fractionation are retained in the projected design. Some second-order mixture designs generated by two-level factorials are discussed.  相似文献   

19.
A RANDOMIZED LONGITUDINAL PLAY-THE-WINNER DESIGN FOR REPEATED BINARY DATA   总被引:1,自引:0,他引:1  
In some clinical trials with two treatment arms, the patients enter the study at different times and are then allocated to one of two treatment groups. It is important for ethical reasons that there is greater probability of allocating a patient to the group that has displayed more favourable responses up to the patient's entry time. There are many adaptive designs in the literature to meet this ethical constraint, but most have a single binary response. Often the binary response is longitudinal in nature, being observed repeatedly over different monitoring times. This paper develops a randomized longitudinal play‐the‐winner design for such binary responses which meets the ethical constraint. Some performance characteristics of this design have been studied. It has been implemented in a trial of pulsed electro‐magnetic field therapy with rheumatoid arthritis patients.  相似文献   

20.
In computer experiments, space-filling designs with a sliced structure or nested structure have received much recent interest and been studied separately. However, it is likely that designs with both structures are needed in some situations, but there are no suitable designs so far. In this paper, we construct a special class of nested Latin hypercube designs with sliced structures, in such a design, a small sliced Latin hypercube design is nested within a large one. The construction method is easy to implement and the number of factors is flexible. Numerical simulations show the usefulness of the newly proposed designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号