首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The D‐optimal minimax criterion is proposed to construct fractional factorial designs. The resulting designs are very efficient, and robust against misspecification of the effects in the linear model. The criterion was first proposed by Wilmut & Zhou (2011); their work is limited to two‐level factorial designs, however. In this paper we extend this criterion to designs with factors having any levels (including mixed levels) and explore several important properties of this criterion. Theoretical results are obtained for construction of fractional factorial designs in general. This minimax criterion is not only scale invariant, but also invariant under level permutations. Moreover, it can be applied to any run size. This is an advantage over some other existing criteria. The Canadian Journal of Statistics 41: 325–340; 2013 © 2013 Statistical Society of Canada  相似文献   

2.
A new design criterion based on the condition number of an information matrix is proposed to construct optimal designs for linear models, and the resulting designs are called K-optimal designs. The relationship between exact and asymptotic K-optimal designs is derived. Since it is usually hard to find exact optimal designs analytically, we apply a simulated annealing algorithm to compute K-optimal design points on continuous design spaces. Specific issues are addressed to make the algorithm effective. Through exact designs, we can examine some properties of the K-optimal designs such as symmetry and the number of support points. Examples and results are given for polynomial regression models and linear models for fractional factorial experiments. In addition, K-optimal designs are compared with A-optimal and D-optimal designs for polynomial regression models, showing that K-optimal designs are quite similar to A-optimal designs.  相似文献   

3.
One classical design criterion is to minimize the determinant of the covariance matrix of the regression estimates, and the designs are called D-optimal designs. To reflect the nature that the proposed models are only approximately true, we propose a robust design criterion to study response surface designs. Both the variance and bias are considered in the criterion. In particular, D-optimal minimax designs are investigated and constructed. Examples are given to compare D-optimal minimax designs with classical D-optimal designs.  相似文献   

4.
It is well known that it is difficult to construct minimax optimal designs. Furthermore, since in practice we never know the true error variance, it is important to allow small deviations and construct robust optimal designs. We investigate a class of minimax optimal regression designs for models with heteroscedastic errors that are robust against possible misspecification of the error variance. Commonly used A-, c-, and I-optimality criteria are included in this class of minimax optimal designs. Several theoretical results are obtained, including a necessary condition and a reflection symmetry for these minimax optimal designs. In this article, we focus mainly on linear models and assume that an approximate error variance function is available. However, we also briefly discuss how the methodology works for nonlinear models. We then propose an effective algorithm to solve challenging nonconvex optimization problems to find minimax designs on discrete design spaces. Examples are given to illustrate minimax optimal designs and their properties.  相似文献   

5.
We study the spatial optimal sampling design for covariance parameter estimation. The spatial process is modeled as a Gaussian random field and maximum likelihood (ML) is used to estimate the covariance parameters. We use the log determinant of the inverse Fisher information matrix as the design criterion and run simulations to investigate the relationship between the inverse Fisher information matrix and the covariance matrix of the ML estimates. A simulated annealing algorithm is developed to search for an optimal design among all possible designs on a fine grid. Since the design criterion depends on the unknown parameters, we define relative efficiency of a design and consider minimax and Bayesian criteria to find designs that are robust for a range of parameter values. Simulation results are presented for the Matérn class of covariance functions.  相似文献   

6.
ABSTRACT

For experiments running in field plots or over time, the observations are often correlated due to spatial or serial correlation, which leads to correlated errors in a linear model analyzing the treatment means. Without knowing the exact correlation matrix of the errors, it is not possible to compute the generalized least-squares estimator for the treatment means and use it to construct optimal designs for the experiments. In this paper, we propose to use neighborhoods to model the covariance matrix of the errors, and apply a modified generalized least-squares estimator to construct robust designs for experiments with blocks. A minimax design criterion is investigated, and a simulated annealing algorithm is developed to find robust designs. We have derived several theoretical results, and representative examples are presented.  相似文献   

7.
Optimal experimental design for estimation of the hemodynamic response function (HRF) is investigated using a nonlinear model with a quadratic mean squared error design criterion. This criterion is used, along with a genetic algorithm, to select locally optimal designs that are shown to be, in most cases, more efficient than designs selected with the more commonly used linear expansion criterion. These designs are also shown to result in lower overall asymptotic estimator variance and bias. The investigation focuses on a single stimulus type, but the criterion can also be used with multiple stimulus types.  相似文献   

8.
The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with an autocorrelated error process. We introduce a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator. Moreover, we prove that the optimal design is robust with respect to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. Finally, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.  相似文献   

9.
In the optimal experimental design literature, the G-optimality is defined as minimizing the maximum prediction variance over the entire experimental design space. Although the G-optimality is a highly desirable property in many applications, there are few computer algorithms developed for constructing G-optimal designs. Some existing methods employ an exhaustive search over all candidate designs, which is time-consuming and inefficient. In this paper, a new algorithm for constructing G-optimal experimental designs is developed for both linear and generalized linear models. The new algorithm is made based on the clustering of candidate or evaluation points over the design space and it is a combination of point exchange algorithm and coordinate exchange algorithm. In addition, a robust design algorithm is proposed for generalized linear models with modification of an existing method. The proposed algorithm are compared with the methods proposed by Rodriguez et al. [Generating and assessing exact G-optimal designs. J. Qual. Technol. 2010;42(1):3–20] and Borkowski [Using a genetic algorithm to generate small exact response surface designs. J. Prob. Stat. Sci. 2003;1(1):65–88] for linear models and with the simulated annealing method and the genetic algorithm for generalized linear models through several examples in terms of the G-efficiency and computation time. The result shows that the proposed algorithm can obtain a design with higher G-efficiency in a much shorter time. Moreover, the computation time of the proposed algorithm only increases polynomially when the size of model increases.  相似文献   

10.
Minimax optimal experimental designs are notoriously difficult to study largely because the optimality criterion is not differentiable and there is no effective algorithm for generating them. We apply semi-infinite programming (SIP) to solve minimax design problems for nonlinear models in a systematic way using a discretization based strategy and solvers from the General Algebraic Modeling System (GAMS). Using popular models from the biological sciences, we show our approach produces minimax optimal designs that coincide with the few theoretical and numerical optimal designs in the literature. We also show our method can be readily modified to find standardized maximin optimal designs and minimax optimal designs for more complicated problems, such as when the ranges of plausible values for the model parameters are dependent and we want to find a design to minimize the maximal inefficiency of estimates for the model parameters.  相似文献   

11.

This work is motivated by the need to find experimental designs which are robust under different model assumptions. We measure robustness by calculating a measure of design efficiency with respect to a design optimality criterion and say that a design is robust if it is reasonably efficient under different model scenarios. We discuss two design criteria and an algorithm which can be used to obtain robust designs. The first criterion employs a Bayesian-type approach by putting a prior or weight on each candidate model and possibly priors on the corresponding model parameters. We define the first criterion as the expected value of the design efficiency over the priors. The second design criterion we study is the minimax design which minimizes the worst value of a design criterion over all candidate models. We establish conditions when these two criteria are equivalent when there are two candidate models. We apply our findings to the area of accelerated life testing and perform sensitivity analysis of designs with respect to priors and misspecification of planning values.  相似文献   

12.
In this paper, we investigate the problem of determining block designs which are optimal under type 1 optimality criteria within various classes of designs having υ treatments arranged in b blocks of size k. The solutions to two optimization problems are given which are related to a general result obtained by Cheng (1978) and which are useful in this investigation. As one application of the solutions obtained, the definition of a regular graph design given in Mitchell and John (1977) is extended to that of a semi-regular graph design and some sufficient conditions are derived for the existence of a semi-regular graph design which is optimal under a given type 1 criterion. A result is also given which shows how the sufficient conditions derived can be used to establish the optimality under a specific type 1 criterion of some particular types of semi- regular graph designs having both equal and unequal numbers of replicates. Finally,some sufficient conditions are obtained for the dual of an A- or D-optimal design to be A- or D-optimal within an appropriate class of dual designs.  相似文献   

13.
Summary: In nonlinear statistical models, standard optimality functions for experimental designs depend on the unknown parameters of the model. An appealing and robust concept for choosing a design is the minimax criterion. However, so far, minimax optimal designs have been calculated efficiently under various restrictive conditions only. We extend an iterative relaxation scheme originally proposed by Shimizu and Aiyoshi (1980) and prove its convergence under very general assumptions which cover a variety of situations considered in experimental design. Application to different specific design criteria is discussed and issues of practical implementation are addressed. First numerical results suggest that the method may be very efficient with respect to the number of iterations required.*Supported by a grant from the Deutsche Forschungsgemeinschaft. We are grateful to a referee for his constructive suggestions.  相似文献   

14.
The authors propose and explore new regression designs. Within a particular parametric class, these designs are minimax robust against bias caused by model misspecification while attaining reasonable levels of efficiency as well. The introduction of this restricted class of designs is motivated by a desire to avoid the mathematical and numerical intractability found in the unrestricted minimax theory. Robustness is provided against a family of model departures sufficiently broad that the minimax design measures are necessarily absolutely continuous. Examples of implementation involve approximate polynomial and second order multiple regression.  相似文献   

15.
M-robust designs are defined and constructed for misspecified linear regression models with possibly autocorrelated errors on a discrete design space. These designs minimize the mean-squared errors if linear regression models are correct with uncorrelated errors, subject to two robust constraints which control the change of the bias and the change of variance under model departures. Simulated annealing algorithm is applied to construct M-robust designs. Examples are given to show M-robust designs and compare them with minimax robust designs.  相似文献   

16.
In this paper, a Bayesian two-stage D–D optimal design for mixture experimental models under model uncertainty is developed. A Bayesian D-optimality criterion is used in the first stage to minimize the determinant of the posterior variances of the parameters. The second stage design is then generated according to an optimalityprocedure that collaborates with the improved model from the first stage data. The results show that a Bayesian two-stage D–D-optimal design for mixture experiments under model uncertainty is more efficient than both the Bayesian one-stage D-optimal design and the non-Bayesian one-stage D-optimal design in most situations. Furthermore, simulations are used to obtain a reasonable ratio of the sample sizes between the two stages.  相似文献   

17.
By incorporating informative and/or historical knowledge of the unknown parameters, Bayesian experimental design under the decision-theory framework can combine all the information available to the experimenter so that a better design may be achieved. Bayesian optimal designs for generalized linear regression models, especially for the Poisson regression model, is of interest in this article. In addition, lack of an efficient computational method in dealing with the Bayesian design leads to development of a hybrid computational method that consists of the combination of a rough global optima search and a more precise local optima search. This approach can efficiently search for the optimal design for multi-variable generalized linear models. Furthermore, the equivalence theorem is used to verify whether the design is optimal or not.  相似文献   

18.
We seek designs which are optimal in some sense for extrapolation when the true regression function is in a certain class of regression functions. More precisely, the class is defined to be the collection of regression functions such that its (h + 1)-th derivative is bounded. The class can be viewed as representing possible departures from an ‘ideal’ model and thus describes a model robust setting. The estimates are restricted to be linear and the designs are restricted to be with minimal number of points. The design and estimate sought is minimax for mean square error. The optimal designs for cases X = [0, ∞] and X = [-1, 1], where X is the place where observations can be taken, are discussed.  相似文献   

19.
In the paper, some issues concerned with the determining spring balance weighing designs satisfying the criterion of D-optimality under the assumption measurement errors are uncorrelated and they have the same variances are discussed. In addition, highly D-efficient spring balance weighing designs are also considered. Some conditions under which any spring balance weighing design is regular D-optimal or highly D-efficient are proved. What is more, new construction methods of regular D-optimal and highly D-efficient spring balance weighing designs are presented.  相似文献   

20.
This article proposes new optimal and minimax designs, which allow early stopping not only for ineffectiveness or toxicity but also for sufficient effectiveness and safety. These designs may facilitate effective drug development by detecting sufficient effectiveness and safety at an early stage or by detecting ineffectiveness or excessive toxicity at an early stage. The proposed design has advantage over other designs in the sense that it can control the type I error rate and is robust against the real association parameter. Comparing to Jin's design, it is always advantageous in terms of expected sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号