首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Latin hypercube designs (LHDs) are widely used in computer experiments because of their one-dimensional uniformity and other properties. Recently, a number of methods have been proposed to construct LHDs with properties that all linear effects are mutually orthogonal and orthogonal to all second-order effects, i.e., quadratic effects and bilinear interactions. This paper focuses on the construction of LHDs with the above desirable properties under the Fourier-polynomial model. A convenient and flexible algorithm for constructing such orthogonal LHDs is provided. Most of the resulting designs have different run sizes from that of Butler (2001), and thus are new and very suitable for factor screening and building Fourier-polynomial models in computer experiments as discussed in Butler (2001).  相似文献   

2.
This paper considers the use of orthogonal arrays of strength two as experimental designs for fitting a surrogate model. Contrary to standard space-filling designs or Latin hypercube designs, the points of an orthogonal array of strength two are well distributed when they are projected on the two-dimensional faces of the unit cube. The aim is to determine if this property allows one to fit an accurate surrogate model when the computer response is governed by second-order interactions of some input variables. The first part of the paper is devoted to the construction of orthogonal arrays with space-filling properties. In the second part, orthogonal arrays are compared with standard designs for fitting a Gaussian process model.  相似文献   

3.
In this paper we define a new class of designs for computer experiments. A projection array based design defines sets of simulation runs with properties that extend the conceptual properties of orthogonal array based Latin hypercube sampling, particularly to underlying design structures other than orthogonal arrays. Additionally, we illustrate how these designs can be sequentially augmented to improve the overall projection properties of the initial design or focus on interesting regions of the design space that need further exploration to improve the overall fit of the underlying response surface. We also illustrate how an initial Latin hypercube sample can be expressed as a projection array based design and show how one can augment these designs to improve higher dimensional space filling properties.  相似文献   

4.
In computer experiments, space-filling designs with a sliced structure or nested structure have received much recent interest and been studied separately. However, it is likely that designs with both structures are needed in some situations, but there are no suitable designs so far. In this paper, we construct a special class of nested Latin hypercube designs with sliced structures, in such a design, a small sliced Latin hypercube design is nested within a large one. The construction method is easy to implement and the number of factors is flexible. Numerical simulations show the usefulness of the newly proposed designs.  相似文献   

5.
Orthogonal Latin hypercube designs from generalized orthogonal designs   总被引:1,自引:0,他引:1  
Latin hypercube designs is a class of experimental designs that is important when computer simulations are needed to study a physical process. In this paper, we proposed some general criteria for evaluating Latin hypercube designs through their alias matrices. Moreover, a general method is proposed for constructing orthogonal Latin hypercube designs. In particular, links between orthogonal designs (ODs), generalized orthogonal designs (GODs) and orthogonal Latin hypercube designs are established. The generated Latin hypercube designs have some favorable properties such as uniformity, orthogonality of the first and some second order terms, and optimality under the defined criteria.  相似文献   

6.
Orthogonal Latin hypercube (OLH) is a good design choice in a polynomial function model for computer experiments, because it ensures uncorrelated estimation of linear effects when a first-order model is fitted. However, when a second-order model is adopted, an OLH also needs to satisfy the additional property that each column is orthogonal to the elementwise square of all columns and orthogonal to the elementwise product of every pair of columns. Such class of OLHs is called OLHs of order two while the former class just possessing two-dimensional orthogonality is called OLHs of order one. In this paper we present a general method for constructing OLHs of orders one and two for n=smn=sm runs, where s and m may be any positive integers greater than one, by rotating a grouped orthogonal array with a column-orthogonal rotation matrix. The Kronecker product and the stacking methods are revisited and combined to construct some new classes of OLHs of orders one and two with other flexible numbers of runs. Some useful OLHs of order one or two with larger factor-to-run ratio and moderate runs are tabulated and discussed.  相似文献   

7.
Haaland B  Qian PZ 《Statistica Sinica》2010,20(3):1063-1075
Multi-fidelity computer experiments are widely used in many engineering and scientific fields. Nested space-filling designs (NSFDs) are suitable for conducting such experiments. Two classes of NSFDs are currently available. One class is based on special orthogonal arrays of strength two and the other consists of nested Latin hypercube designs. Both of them assume all factors are continuous. We propose an approach to constructing new NSFDs based on powerful (t, s)-sequences. The method is simple, easy to implement, and quite general. For continuous factors, this approach produces NSFDs with better space-filling properties than existing ones. Unlike the previous methods, this method can also construct NSFDs for categorical and mixed factors. Some illustrative examples are given. Other applications of the constructed designs are briefly discussed.  相似文献   

8.
Latin squares have been widely used to design an experiment where the blocking factors and treatment factors have the same number of levels. For some experiments, the size of blocks may be less than the number of treatments. Since not all the treatments can be compared within each block, a new class of designs called balanced incomplete Latin squares (BILS) is proposed. A general method for constructing BILS is proposed by an intelligent selection of certain cells from a complete Latin square via orthogonal Latin squares. The optimality of the proposed BILS designs is investigated. It is shown that the proposed transversal BILS designs are asymptotically optimal for all the row, column and treatment effects. The relative efficiencies of a delete-one-transversal BILS design with respect to the optimal designs for both cases are also derived; it is shown to be close to 100%, as the order becomes large.  相似文献   

9.
Computer models simulating a physical process are used in many areas of science. Due to the complex nature of these codes it is often necessary to approximate the code, which is typically done using a Gaussian process. In many situations the number of code runs available to build the Gaussian process approximation is limited. When the initial design is small or the underlying response surface is complicated this can lead to poor approximations of the code output. In order to improve the fit of the model, sequential design strategies must be employed. In this paper we introduce two simple distance based metrics that can be used to augment an initial design in a batch sequential manner. In addition we propose a sequential updating strategy to an orthogonal array based Latin hypercube sample. We show via various real and simulated examples that the distance metrics and the extension of the orthogonal array based Latin hypercubes work well in practice.  相似文献   

10.
The concept of pairwise orthogonal Latin square design is applied to r row by c column experiment designs which are called pairwise orthogonal F-rectangle designs. These designs are useful in designing successive and/or simulataneous experiments on the same set of rc experimental units, in constructing codes, and in constructing orthogonal arrays. A pair of orthogonal F-rectangle designs exists for any set of v treatment (symbols), whereas no pair of orthogonal Latin square designs of order two and six exists; one of the two construction methods presented does not rely on any previous knowledge about the existence of a pair of orthogonal Latin square designs, whereas the second one does. It is shown how to extend the methods to r=pv row by c=qv column designs and how to obtain t pairwise orthogonal F-rectangle design. When the maximum possible number of pairwise orthogonal F-rectangle designs is attained the set is said to be complete. Complete sets are obtained for all v for which v is a prime power. The construction method makes use of the existence of a complete set of pairwise orthogonal Latin square designs and of an orthogonal array with vn columns, (vn−1)/(v−1) rows, v symbols, and of strength two.  相似文献   

11.
Computer models can describe complicated phenomena encountered in science and engineering fields. To use these models for scientific investigation, however, their generally long running time and mostly deterministic nature require a specially designed experiment. The column-orthogonal design (COD) is a popular choice for computer experiments. Because of the restriction on the orthogonality, however, only little CODs can be constructed. In this article, we propose two algorithms for constructing nearly CODs by rotating orthogonal arrays under two different criteria. Further, some obtained nearly CODs are nearly Latin hypercube designs. Some examples are provided to show the advantages of our algorithms. Some rotation matrices obtained via the algorithms are listed.  相似文献   

12.
Space-filling designs are commonly used for selecting the input values of time-consuming computer codes. Computer experiment context implies two constraints on the design. First, the design points should be evenly spread throughout the experimental region. A space-filling criterion (for instance, the maximin distance) is used to build optimal designs. Second, the design should avoid replication when projecting the points onto a subset of input variables (non-collapsing). The Latin hypercube structure is often enforced to ensure good projective properties. In this paper, a space-filling criterion based on the Kullback–Leibler information is used to build a new class of Latin hypercube designs. The new designs are compared with several traditional optimal Latin hypercube designs and appear to perform well.  相似文献   

13.
The use of optimal orthogonal array latin hypercube designs is proposed. Orthogonal arrays were proposed for constructing latin hypercube designs by Tang (1993). Such designs generally have better space filling properties than random latin hypercube designs. Even so, these designs do not necessarily fill the space particularly well. As a result, we consider orthogonal-array-based latin hypercube designs that try to achieve optimality in some sense. Optimization is performed by adapting strategies found in Morris & Mitchell (1995) and Ye et al. (2000). The strategies here search only orthogonal-array-based latin hypercube designs and, as a result, optimal designs are found in a more efficient fashion. The designs found are in general agreement with existing optimal designs reported elsewhere.  相似文献   

14.
The maximin distance criterion is used for the selection of an OA-based Latin hypercube. For the case in which the underlying orthogonal array is a full factorial design without replication, we construct an OA-based Latin hypercube that reaches the same distance as its parent array.  相似文献   

15.
Experiments, used in the telecommunications industry and elsewhere, are considered that involve the simultaneous application of levels of two unrelated factors, treatments and stimuli, to each of several subjects in a succession of time periods. The existence is suspected of carry-over effects of treatments and stimuli, in the period immediately following the period of their application. Methods are given for the construction of separate sequences of treatments and of stimuli; these methods are based on the Latin squares of Williams and of Russell. In the resulting designs, the treatments and stimuli are either orthogonal or nearly orthogonal, and the coincidence of the direct and carry-over effects of each factor is either balanced or nearly balanced. The efficiencies of the designs are assessed by comparing the average variances of elementary contrasts in the levels of each factor with appropriate lower bounds.  相似文献   

16.
In experiments with mixtures involving process variables, orthogonal block designs may be used to allow estimation of the parameters of the mixture components independently of estimation of the parameters of the process variables. In the class of orthogonally blocked designs based on pairs of suitably chosen Latin squares, the optimal designs consist primarily of binary blends of the mixture components, regardless of how many ingredients are available for the mixture. This paper considers ways of modifying these optimal designs so that some or all of the runs used in the experiment include a minimum proportion of each mixture ingredient. The designs considered are nearly optimal in the sense that the experimental points are chosen to follow ridges of maxima in the optimality criteria. Specific designs are discussed for mixtures involving three and four components and distinctions are identified for different designs with the same optimality properties. The ideas presented for these specific designs are readily extended to mixtures with q>4 components.  相似文献   

17.
The wrap-around (WD) L2-discrepancy has been commonly used in experimental designs. In this paper, some lower bounds of the WD L2-discrepancy for asymmetrical U-type designs are given and the expectation and variance of midpoint Latin hypercube designs (LHD) are also obtained. Relationships between midpoint LHD and uniform designs for symmetrical and asymmetrical cases are discussed in the sense of comparing the lower bound and the expectation of squared wrap-around L2-discrepancy of U-type designs. Some comparisons between simple random sampling and the lower bounds of U-type designs are given.  相似文献   

18.
As modeling efforts expand to a broader spectrum of areas the amount of computer time required to exercise the corresponding computer codes has become quite costly (several hours for a single run is not uncommon). This costly process can be directly tied to the complexity of the modeling and to the large number of input variables (often numbering in the hundreds) Further, the complexity of the modeling (usually involving systems of differential equations) makes the relationships among the input variables not mathematically tractable. In this setting it is desired to perform sensitivity studies of the input-output relationships. Hence, a judicious selection procedure for the choic of values of input variables is required, Latin hypercube sampling has been shown to work well on this type of problem.

However, a variety of situations require that decisions and judgments be made in the face of uncertainty. The source of this uncertainty may be lack ul knowledge about probability distributions associated with input variables, or about different hypothesized future conditions, or may be present as a result of different strategies associated with a decision making process In this paper a generalization of Latin hypercube sampling is given that allows these areas to be investigated without making additional computer runs. In particular it is shown how weights associated with Latin hypercube input vectors may be rhangpd to reflect different probability distribution assumptions on key input variables and yet provide: an unbiased estimate of the cumulative distribution function of the output variable. This allows for different distribution assumptions on input variables to be studied without additional computer runs and without fitting a response surface. In addition these same weights can be used in a modified nonparametric Friedman test to compare treatments, Sample size requirements needed to apply the results of the work are also considered. The procedures presented in this paper are illustrated using a model associated with the risk assessment of geologic disposal of radioactive waste.  相似文献   

19.
SUMMARY The problem of generating a good experimental design for spatial correlation regression is studied in this paper. The quality of fit generated by random designs, Latin hypercube designs and factorial designs is studied for a particular response surface that arises in inkjet printhead design. These studies indicate that the quality of fit generated by spatial correlation models is highly dependent on the choice of design. A design strategy that we call 'factorial hypercubes' is introduced as a new method. This method can be thought of as an example of a more general class of hybrid designs. The quality of fit generated by these designs is compared with those of other methods. These comparisons indicate a better fit and less numerical problems with factorial hypercubes.  相似文献   

20.
This paper introduces a new class of designs called equi-neighboured designs. An equineighboured design has the property that every unordered pair of treatments occurs as nearest neighbours equally frequently at every level. These designs are defined in Section 4 and shown to be balanced when neighbouring observations are correlated. Some equineighboured designs are constructed using a complete set of orthogonal Latin squares. Cyclic equineighboured designs are also defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号