首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this article is to demonstrate the use of the quantile dispersion graphs (QDGs) approach for comparing candidate designs for generalized linear models in the presence of model misspecification in the linear predictor. The proposed design criterion is based on the mean-squared error of prediction which incorporates the prediction variance and the bias caused by fitting the wrong model. The method of kriging is used to estimate the unknown function assumed to be the cause of model misspecification. The QDGs approach is also useful in assessing the robustness of a given design to values of the unknown parameters in the linear predictor. Three numerical examples are presented to illustrate the application of the proposed methodology.  相似文献   

2.
Model misspecification and noisy covariate measurements are two common sources of inference bias. There is considerable literature on the consequences of each problem in isolation. In this paper, however, the author investigates their combined effects. He shows that in the context of linear models, the large‐sample error in estimating the regression function may be partitioned in two terms quantifying the impact of these sources of bias. This decomposition reveals trade‐offs between the two biases in question in a number of scenarios. After presenting a finite‐sample version of the decomposition, the author studies the relative impacts of model misspecification, covariate imprecision, and sampling variability, with reference to the detectability of the model misspecification via diagnostic plots.  相似文献   

3.
We develop criteria that generate robust designs and use such criteria for the construction of designs that insure against possible misspecifications in logistic regression models. The design criteria we propose are different from the classical in that we do not focus on sampling error alone. Instead we use design criteria that account as well for error due to bias engendered by the model misspecification. Our robust designs optimize the average of a function of the sampling error and bias error over a specified misspecification neighbourhood. Examples of robust designs for logistic models are presented, including a case study implementing the methodologies using beetle mortality data.  相似文献   

4.
Assessing dose response from flexible‐dose clinical trials is problematic. The true dose effect may be obscured and even reversed in observed data because dose is related to both previous and subsequent outcomes. To remove selection bias, we propose marginal structural models, inverse probability of treatment‐weighting (IPTW) methodology. Potential clinical outcomes are compared across dose groups using a marginal structural model (MSM) based on a weighted pooled repeated measures analysis (generalized estimating equations with robust estimates of standard errors), with dose effect represented by current dose and recent dose history, and weights estimated from the data (via logistic regression) and determined as products of (i) inverse probability of receiving dose assignments that were actually received and (ii) inverse probability of remaining on treatment by this time. In simulations, this method led to almost unbiased estimates of true dose effect under various scenarios. Results were compared with those obtained by unweighted analyses and by weighted analyses under various model specifications. The simulation showed that the IPTW MSM methodology is highly sensitive to model misspecification even when weights are known. Practitioners applying MSM should be cautious about the challenges of implementing MSM with real clinical data. Clinical trial data are used to illustrate the methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A.G. Patriota and A.J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655–1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.  相似文献   

6.
In most practical applications, the quality of count data is often compromised due to errors-in-variables (EIVs). In this paper, we apply Bayesian approach to reduce bias in estimating the parameters of count data regression models that have mismeasured independent variables. Furthermore, the exposure model is misspecified with a flexible distribution, hence our approach remains robust against any departures from normality in its true underlying exposure distribution. The proposed method is also useful in realistic situations as the variance of EIVs is estimated instead of assumed as known, in contrast with other methods of correcting bias especially in count data EIVs regression models. We conduct simulation studies on synthetic data sets using Markov chain Monte Carlo simulation techniques to investigate the performance of our approach. Our findings show that the flexible Bayesian approach is able to estimate the values of the true regression parameters consistently and accurately.  相似文献   

7.
In this article, we propose a flexible parametric (FP) approach for adjusting for covariate measurement errors in regression that can accommodate replicated measurements on the surrogate (mismeasured) version of the unobserved true covariate on all the study subjects or on a sub-sample of the study subjects as error assessment data. We utilize the general framework of the FP approach proposed by Hossain and Gustafson in 2009 for adjusting for covariate measurement errors in regression. The FP approach is then compared with the existing non-parametric approaches when error assessment data are available on the entire sample of the study subjects (complete error assessment data) considering covariate measurement error in a multiple logistic regression model. We also developed the FP approach when error assessment data are available on a sub-sample of the study subjects (partial error assessment data) and investigated its performance using both simulated and real life data. Simulation results reveal that, in comparable situations, the FP approach performs as good as or better than the competing non-parametric approaches in eliminating the bias that arises in the estimated regression parameters due to covariate measurement errors. Also, it results in better efficiency of the estimated parameters. Finally, the FP approach is found to perform adequately well in terms of bias correction, confidence coverage, and in achieving appropriate statistical power under partial error assessment data.  相似文献   

8.
The method of target estimation developed by Cabrera and Fernholz [(1999). Target estimation for bias and mean square error reduction. The Annals of Statistics, 27(3), 1080–1104.] to reduce bias and variance is applied to logistic regression models of several parameters. The expectation functions of the maximum likelihood estimators for the coefficients in the logistic regression models of one and two parameters are analyzed and simulations are given to show a reduction in both bias and variability after targeting the maximum likelihood estimators. In addition to bias and variance reduction, it is found that targeting can also correct the skewness of the original statistic. An example based on real data is given to show the advantage of using target estimators for obtaining better confidence intervals of the corresponding parameters. The notion of the target median is also presented with some applications to the logistic models.  相似文献   

9.
Demonstrated equivalence between a categorical regression model based on case‐control data and an I‐sample semiparametric selection bias model leads to a new goodness‐of‐fit test. The proposed test statistic is an extension of an existing Kolmogorov–Smirnov‐type statistic and is the weighted average of the absolute differences between two estimated distribution functions in each response category. The paper establishes an optimal property for the maximum semiparametric likelihood estimator of the parameters in the I‐sample semiparametric selection bias model. It also presents a bootstrap procedure, some simulation results and an analysis of two real datasets.  相似文献   

10.
ABSTRACT

A Lagrange multiplier test for testing the parametric structure of a constant conditional correlation-generalized autoregressive conditional heteroskedasticity (CCC-GARCH) model is proposed. The test is based on decomposing the CCC-GARCH model multiplicatively into two components, one of which represents the null model, whereas the other one describes the misspecification. A simulation study shows that the test has good finite sample properties. We compare the test with other tests for misspecification of multivariate GARCH models. The test has high power against alternatives where the misspecification is in the GARCH parameters and is superior to other tests. The test is not greatly affected by misspecification in the conditional correlations and is therefore well suited for considering misspecification of GARCH equations.  相似文献   

11.
Asymptotic bias formulae are obtained for Heckman's two step estimator under misspecification of the single equation Tobit modelj and the two equation sample selection model. Asymptotic biases are also obtained for the ordinary least squares estimator based on uncensored observations only. Omitted variables, errors in variables, and heteroskedasticity are considered as sources of misspecification. The biases are illustrated by numerical examples, in which the Tobit maximum likelihood estimator is also included. Severe consequences for the two step estimator are indicated.  相似文献   

12.
This article considers a class of estimators for the location and scale parameters in the location-scale model based on ‘synthetic data’ when the observations are randomly censored on the right. The asymptotic normality of the estimators is established using counting process and martingale techniques when the censoring distribution is known and unknown, respectively. In the case when the censoring distribution is known, we show that the asymptotic variances of this class of estimators depend on the data transformation and have a lower bound which is not achievable by this class of estimators. However, in the case that the censoring distribution is unknown and estimated by the Kaplan–Meier estimator, this class of estimators has the same asymptotic variance and attains the lower bound for variance for the case of known censoring distribution. This is different from censored regression analysis, where asymptotic variances depend on the data transformation. Our method has three valuable advantages over the method of maximum likelihood estimation. First, our estimators are available in a closed form and do not require an iterative algorithm. Second, simulation studies show that our estimators being moment-based are comparable to maximum likelihood estimators and outperform them when sample size is small and censoring rate is high. Third, our estimators are more robust to model misspecification than maximum likelihood estimators. Therefore, our method can serve as a competitive alternative to the method of maximum likelihood in estimation for location-scale models with censored data. A numerical example is presented to illustrate the proposed method.  相似文献   

13.
Summary. We compare the robustness under model misspecification of two approaches to fitting logistic regression models with unmatched case–control data. One is the standard survey approach based on weighted versions of population estimating equations. The other is the likelihood-based approach that is standard in medical applications. The conventional view is that the (less efficient) survey-weighted approach leads to greater robustness. We conclude that this view is not always justified.  相似文献   

14.
In a longitudinal study, an individual is followed up over a period of time. Repeated measurements on the response and some time-dependent covariates are taken at a series of sampling times. The sampling times are often irregular and depend on covariates. In this paper, we propose a sampling adjusted procedure for the estimation of the proportional mean model without having to specify a sampling model. Unlike existing procedures, the proposed method is robust to model misspecification of the sampling times. Large sample properties are investigated for the estimators of both regression coefficients and the baseline function. We show that the proposed estimation procedure is more efficient than the existing procedures. Large sample confidence intervals for the baseline function are also constructed by perturbing the estimation equations. A simulation study is conducted to examine the finite sample properties of the proposed estimators and to compare with some of the existing procedures. The method is illustrated with a data set from a recurrent bladder cancer study.  相似文献   

15.
Summary.  Model selection for marginal regression analysis of longitudinal data is challenging owing to the presence of correlation and the difficulty of specifying the full likelihood, particularly for correlated categorical data. The paper introduces a novel Bayesian information criterion type model selection procedure based on the quadratic inference function, which does not require the full likelihood or quasi-likelihood. With probability approaching 1, the criterion selects the most parsimonious correct model. Although a working correlation matrix is assumed, there is no need to estimate the nuisance parameters in the working correlation matrix; moreover, the model selection procedure is robust against the misspecification of the working correlation matrix. The criterion proposed can also be used to construct a data-driven Neyman smooth test for checking the goodness of fit of a postulated model. This test is especially useful and often yields much higher power in situations where the classical directional test behaves poorly. The finite sample performance of the model selection and model checking procedures is demonstrated through Monte Carlo studies and analysis of a clinical trial data set.  相似文献   

16.
ABSTRACT

In logistic regression with nonignorable missing responses, Ibrahim and Lipsitz proposed a method for estimating regression parameters. It is known that the regression estimates obtained by using this method are biased when the sample size is small. Also, another complexity arises when the iterative estimation process encounters separation in estimating regression coefficients. In this article, we propose a method to improve the estimation of regression coefficients. In our likelihood-based method, we penalize the likelihood by multiplying it by a noninformative Jeffreys prior as a penalty term. The proposed method reduces bias and is able to handle the issue of separation. Simulation results show substantial bias reduction for the proposed method as compared to the existing method. Analyses using real world data also support the simulation findings. An R package called brlrmr is developed implementing the proposed method and the Ibrahim and Lipsitz method.  相似文献   

17.
Model selection methods are important to identify the best approximating model. To identify the best meaningful model, purpose of the model should be clearly pre-stated. The focus of this paper is model selection when the modelling purpose is classification. We propose a new model selection approach designed for logistic regression model selection where main modelling purpose is classification. The method is based on the distance between the two clustering trees. We also question and evaluate the performances of conventional model selection methods based on information theory concepts in determining best logistic regression classifier. An extensive simulation study is used to assess the finite sample performances of the cluster tree based and the information theoretic model selection methods. Simulations are adjusted for whether the true model is in the candidate set or not. Results show that the new approach is highly promising. Finally, they are applied to a real data set to select a binary model as a means of classifying the subjects with respect to their risk of breast cancer.  相似文献   

18.
The logistic regression model has been widely used in the social and natural sciences and results from studies using this model can have significant policy impacts. Thus, confidence in the reliability of inferences drawn from these models is essential. The robustness of such inferences is dependent on sample size. The purpose of this article is to examine the impact of alternative data sets on the mean estimated bias and efficiency of parameter estimation and inference for the logistic regression model with observational data. A number of simulations are conducted examining the impact of sample size, nonlinear predictors, and multicollinearity on substantive inferences (e.g. odds ratios, marginal effects) when using logistic regression models. Findings suggest that small sample size can negatively affect the quality of parameter estimates and inferences in the presence of rare events, multicollinearity, and nonlinear predictor functions, but marginal effects estimates are relatively more robust to sample size.  相似文献   

19.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

20.
We consider the corrective approach (Theoretical Statistics, Chapman & Hall, London, 1974, p. 310) and preventive approach (Biometrica 80 (1993) 27) to bias reduction of maximum likelihood estimators under the logistic regression model based on case–control data. The proposed bias-corrected maximum likelihood estimators are based on the semiparametric profile log likelihood function under a two-sample semiparametric model, which is equivalent to the assumed logistic regression model. We show that the prospective and retrospective analyses on the basis of the corrective approach to bias reduction produce identical bias-corrected maximum likelihood estimators of the odds ratio parameter, but this does not hold when using the preventive approach unless the case and control sample sizes are identical. We present some results on simulation and on the analysis of two real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号