首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Different quality control charts for the sample mean are developed using ranked set sampling (RSS), and two of its modifications, namely median ranked set sampling (MRSS) and extreme ranked set sampling (ERSS). These new charts are compared to the usual control charts based on simple random sampling (SRS) data. The charts based on RSS or one of its modifications are shown to have smaller average run length (ARL) than the classical chart when there is a sustained shift in the process mean. The MRSS and ERSS methods are compared with RSS and SRS data, it turns out that MRSS dominates all other methods in terms of the out-of-control ARL performance. Real data are collected using the RSS, MRSS, and ERSS in cases of perfect and imperfect ranking. These data sets are used to construct the corresponding control charts. These charts are compared to usual SRS chart. Throughout this study we are assuming that the underlying distribution is normal. A check of the normality for our example data set indicated that the normality assumption is reasonable.  相似文献   

2.
This paper demonstrates the use of maxima nomination sampling (MNS) technique in design and evaluation of single AQL, LTPD, and EQL acceptance sampling plans for attributes. We exploit the effect of sample size and acceptance number on the performance of our proposed MNS plans using operating characteristic (OC) curve. Among other results, we show that MNS acceptance sampling plans with smaller sample size and bigger acceptance number perform better than commonly used acceptance sampling plans for attributes based on simple random sampling (SRS) technique. Indeed, MNS acceptance sampling plans result in OC curves which, compared to their SRS counterparts, are much closer to the ideal OC curve. A computer program is designed which can be used to specify the optimum MNS acceptance sampling plan and to show, visually, how the shape of the OC curve changes when parameters of the acceptance sampling plan vary. Theoretical results and numerical evaluations are given.  相似文献   

3.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature.  相似文献   

4.
In this paper, an attempt is made to develop Quality Control Charts for monitoring the process mean based on Double Ranked Set Sampling (DRSS) rather than the traditional Simple Random Sampling (SRS). Considering a normal population and several shift values, the performance of the Average Run Length (ARL) of these new charts was compared with the control charts based on Ranked Set Sampling (RSS) and SRS with the same number of observations. It is shown that the new charts do a better job of detecting changes in process mean compared with SRS and RSS.  相似文献   

5.
This study demonstrates that a location parameter of an exponential distribution significantly influences normalization of the exponential. The Kullback–Leibler information number is shown to be an appropriate index for measuring data normality using a location parameter. Control charts based on probability limits and transformation are compared for known and estimated location parameters. The probabilities of type II error (β-risks) and average run length (ARL) without a location parameter indicate an ability to detect an out-of-control signal of an individual chart using a power transformation similar to using probability limits. The β-risks and ARL of control charts with an estimated location parameter deviate significantly from their theoretical values when a small sample size of n≤50 is used. Therefore, without taking into account of the existence of a location parameter, the control charts result in inaccurate detection of an out-of-control signal regardless of whether a power or natural logarithmic transformation is used. The effects of a location parameter should be eliminated before transformation. Two examples are presented to illustrate these findings.  相似文献   

6.
Recent studies have shown that using variable sampling size and control limits (VSSC) schemes result in charts with more statistical power than variable sampling size (VSS) when detecting small to moderate shifts in the process mean vector. This paper presents an economic-statistical design (ESD) of the VSSC T2 control chart using the general model of Lorenzen and Vance [22]. The genetic algorithm approach is then employed to search for the optimal values of the six test parameters of the chart. We then compare the expected cost per unit of time of the optimally designed VSSC chart with optimally designed VSS and FRS (fixed ratio sampling) T2 charts as well as MEWMA charts.  相似文献   

7.
In this paper, a new control chart is proposed by using an auxiliary variable and repetitive sampling in order to enhance the performance of detecting a shift in process mean. The product-difference type estimator of the mean is plotted on the proposed control chart, which utilizes the information of an auxiliary variable correlated with the main quality variable. The proposed control chart is based on the outer and inner control limits so that repetitive sampling is allowed when the plotted statistic falls between the two limits. The average run length (ARL) of the proposed control chart is evaluated using the Monte Carlo simulation. The proposed control chart is compared with the Riaz M control chart and the results show the outperformance of the proposed control chart in terms of the ARL.  相似文献   

8.
Compared to the grid search approach to optimal design of control charts, the gradient-based approach is more computationally efficient as the gradient information indicates the direction to search the optimal design parameters. However, the optimal parameters of multivariate exponentially weighted moving average (MEWMA) control charts are often obtained by using grid search in the existing literature. Note that the average run length (ARL) performance of the MEWMA chart can be calculated based on a Markov chain model, making it feasible to estimate the ARL gradient from it. Motivated by this, this paper develops an ARL gradient-based approach for the optimal design and sensitivity analysis of MEWMA control charts. It is shown that the proposed method is able to provide a fast, accurate, and easy-to-implement algorithm for the design and analysis of MEWMA charts, as compared to the conventional design approach based on grid search.  相似文献   

9.
10.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

11.
ABSTRACT

In this article, we introduce new nonparametric Shewhart-type control charts that take into account the location of two order statistics of the test sample as well as the number of observations in that sample that lie between the control limits. Exact formulae for the alarm rate, the run length distribution and the average run length (ARL) are all derived. A key advantage of the new charts is that, due to its nonparametric nature, the false alarm rate (FAR) and in-control run length distribution is the same for all continuous process distributions. Tables are provided for the implementation of the proposed charts for some typical FAR and ARL values. Furthermore, a numerical study carried out reveals that the new charts are quite flexible and efficient in detecting shifts to Lehmann-type out-of-control situations, while they seem preferable from a robustness point of view in comparison with the distribution-free control chart of Balakrishnan et al. (2009).  相似文献   

12.
The Hotelling's T 2 control chart, a direct analogue of the univariate Shewhart chart, is perhaps the most commonly used tool in industry for simultaneous monitoring of several quality characteristics. Recent studies have shown that using variable sampling size (VSS) schemes results in charts with more statistical power when detecting small to moderate shifts in the process mean vector. In this paper, we build a cost model of a VSS T 2 control chart for the economic and economic statistical design using the general model of Lorenzen and Vance [The economic design of control charts: A unified approach, Technometrics 28 (1986), pp. 3–11]. We optimize this model using a genetic algorithm approach. We also study the effects of the costs and operating parameters on the VSS T 2 parameters, and show, through an example, the advantage of economic design over statistical design for VSS T 2 charts, and measure the economic advantage of VSS sampling versus fixed sample size sampling.  相似文献   

13.
Originally, the exponentially weighted moving average (EWMA) control chart was developed for detecting changes in the process mean. The average run length (ARL) became the most popular performance measure for schemes with this objective. When monitoring the mean of independent and normally distributed observations the ARL can be determined with high precision. Nowadays, EWMA control charts are also used for monitoring the variance. Charts based on the sample variance S2 are an appropriate choice. The usage of ARL evaluation techniques known from mean monitoring charts, however, is difficult. The most accurate method—solving a Fredholm integral equation with the Nyström method—fails due to an improper kernel in the case of chi-squared distributions. Here, we exploit the collocation method and the product Nyström method. These methods are compared to Markov chain based approaches. We see that collocation leads to higher accuracy than currently established methods.  相似文献   

14.
Control charts are widely used in industries to monitor a process for quality improvement. Evaluation of the average run length (ARL) or average time to signal (ATS) plays an important role in the design of control charts and performance comparison. In this paper, we review several basic and popular procedures, including the Markov chain and integral equation methods for computing ARL, ATS and associated run length distributions for cumulative sum charts, exponentially weighted moving average charts and combined control charts, respectively. Some important references and key formulations are provided for practitioners.  相似文献   

15.
The usual practice in using a Bayesian control chart to monitor a process is done by taking samples from the process with fixed sampling intervals. Recent studies on traditional control charts have shown that variable sampling interval (VSI) scheme compared to classical scheme (fixed ratio sampling, FRS) helps practitioners to detect process shifts more quickly. In this paper, the effectiveness of VSI scheme on performance of Bayesian control chart has been studied, based on economic (ED) and economic–statistical designs (ESD). Monte Carlo method and artificial bee colony algorithm have been utilized to obtain optimal design parameters of Bayesian control chart (sample size, sampling intervals, warning limit and control limit) since the statistic of this approach does not have any specified distribution. Finally, VSI Bayesian control chart has been compared to FRS Bayesian and VSI X-bar approaches based on ED and ESD, separately. According to the results, it has been found that the performance of VSI Bayesian scheme is better than FRS Bayesian and VSI X-bar approaches.  相似文献   

16.
This study investigates the statistical properties of the adaptive Hotelling's T 2 charts with run rules in which the sample size and sampling interval are allowed to vary according on the current and past sampling points. The adaptive charts include variable sample size (VSS), variable sampling interval (VSI), and variable sample size and sampling interval (VSSI) charts. The adaptive Hotelling's T 2 charts with run rules are compared with the fixed sampling rate Hotelling's T 2 chart with run rules. The numerical results show that the VSS, VSI, and VSSI features improve the performance of the Hotelling's T 2 chart with run rules.  相似文献   

17.
The average run length (ARL) of conventional control charts is typically computed assuming temporal independence. However, this assumption is frequently violated in practical applications. Alternative ARL computations have often been conducted via time consuming and yet not necessarily very accurate simulations. In this article, we develop a class of Markov chain models for evaluating the run length performance of traditional control charts for autocorrelated processes. We show extensions from the univariate AR(1) model to the general multivariate VARMA(p, q) time series. The results of the proposed method are highly comparable to those of simulations and with significantly less computational overhead.  相似文献   

18.
One of the objectives of research in statistical process control is to obtain control charts that show few false alarms but, at the same time, are able to detect quickly the shifts in the distribution of the quality variables employed to monitor a productive process. In this article, the synthetic-T 2 control chart is developed, which consists of the simultaneous use of a CRL chart and a Hotelling's T 2 control chart. The ARL is calculated employing Markov chains for steady and zero-state scenarios. A procedure of optimization has been developed to obtain the optimum parameters of the synthetic-T 2, for zero and steady cases, given the values of in-control ARL and magnitude of shift which needs to be detected rapidly. A comparison between (standard T 2, MEWMA, T 2 with variable sample size, and T 2 with double sampling) charts reveals that the synthetic-T 2 chart always performs better than the standard T 2 chart. The comparison with the remaining charts demonstrate in which cases the performance of this new chart makes it interesting to employ in real applications.  相似文献   

19.
In this paper, we presented a memory type control chart (CC) based on multiple dependent state (MDS) sampling to pinpoint the slight variation in the process mean for the quality trait of normal distribution (ND). Two pairs of control limits denominated as internal and external control limits are derived using under control mean and variance. The essential steps are taken to get the value of average run length (ARL) for stable and disturb process. Various tables of ARLs are erected using different smoothing constants, shifts and MDS parameter. Comparisons are established to assess the effectiveness of initiated CC with the various existing CC in term of ARL. It has been ascertained that offered CC manifest the best performance in searching out the diminutive changes in the process mean. Two examples, one is based on simulation study and other is related to real-life data, have been discussed for its practical purpose.KEYWORDS: Multiple dependent state, normal distribution, smoothing constants, control chart  相似文献   

20.
The existing synthetic exponential control charts are based on the assumption of known in-control parameter. However, the in-control parameter has to be estimated from a Phase I dataset. In this article, we use the exact probability distribution, especially the percentiles, mean, and standard deviation of the conditional average run length (ARL) to evaluate the effect of parameter estimation on the performance of the Phase II synthetic exponential charts. This approach accounts for the variability in the conditional ARL values of the synthetic chart obtained by different practitioners. Since parameter estimation results in more false alarms than expected, we develop an exact method to design the adjusted synthetic charts with desired conditional in-control performance. Results of known and unknown in-control parameter cases show that the control limit of the conforming run length sub-chart of the synthetic chart should be as small as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号