首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we use the notion of minimal dependent sets (MDS) to introduce MDS-resolution and MDS-aberration as criteria for comparing non-orthogonal foldover designs, and discuss the ideas and their usefulness. We also develop a fast isomorphism check that uses a cyclic matrix defined on the design before it is folded over. By doing so, the speed of the check for comparing two isomorphic designs is increased relative to merely applying an isomorphism check to the foldover design. This relative difference becomes greater as the design size increases. Finally, we use the isomorphism check to obtain a catalog of minimum MDS-aberration designs for some useful nn and kk and discuss an algorithm for obtaining “good” larger designs.  相似文献   

2.
In this paper, we consider experimental situations in which a regular fractional factorial design is to be used to study the effects of m two-level factors using n=2mk experimental units arranged in 2p blocks of size 2mkp. In such situations, two-factor interactions are often confounded with blocks and complete information is lost on these two-factor interactions. Here we consider the use of the foldover technique in conjunction with combining designs having different blocking schemes to produce alternative partially confounded blocked fractional factorial designs that have more estimable two-factor interactions or a higher estimation capacity or both than their traditional counterparts.  相似文献   

3.
In this paper we propose a new criterion, minimum aberration majorization, for comparing non-isomorphic saturated designs. This criterion is based on the generalized word-length pattern proposed by Ma and Fang (Metrika 53 (2001) 85) and Xu and Wu (Ann. Statist. 29 (2001) 1066) and majorization theory. The criterion has been successfully applied to check non-isomorphism and rank order saturated designs. Examples are given through five non-isomorphic L16(215) designs and two L27(313) designs.  相似文献   

4.
Two fractional factorial designs are isomorphic if one can be obtained from the other by reordering the treatment combinations, relabelling the factor levels and relabelling the factors. By defining a word-pattern matrix, we are able to create a new isomorphism check which is much faster than existing checks for certain situations. We combine this with a new, extremely fast, sufficient condition for non-isomorphism to avoid checking certain cases. We then create a faster search algorithm by combining the Bingham and Sitter [1999. Minimum aberration fractional factorial split-plot designs. Technometrics 41, 62–70] search algorithm, the isomorphism check algorithm of Clark and Dean [2001. Equivalence of fractional factorial designs. Statist. Sinica 11, 537–547] with our proposed isomorphism check. The algorithm is used to extend the known set of existing non-isomorphic 128-run two-level regular designs with resolution ?4?4 to situations with 12, 13, 14, 15 and 16 factors, 256- and 512-run designs with resolution ?5?5 and ?17?17 factors and 1024-run even designs with resolution ?6?6 and ?18?18 factors.  相似文献   

5.
Two methods to select columns for assigning factors to work on supersaturated designs are proposed. The focus of interest is the degree of non-orthogonality between the selected columns. One method is the exhaustive enumeration of selections of p columns from all k columns to find the exact optimality, while the other is intended to find an approximate solution by applying techniques used in the corresponding analysis, aiming for ease of use as well as a reduction in the large computing time required for large k with the first method. Numerical illustrations for several typical design matrices reveal that the resulting “approximately” optimal assignments of factors to their columns are exactly optimal for any p. Ordering the columns in E(s2)-optimal designs results in promising new findings including a large number of E(s2)-optimal designs.  相似文献   

6.
Use of full Bayesian decision-theoretic approaches to obtain optimal stopping rules for clinical trial designs typically requires the use of Backward Induction. However, the implementation of Backward Induction, apart from simple trial designs, is generally impossible due to analytical and computational difficulties. In this paper we present a numerical approximation of Backward Induction in a multiple-arm clinical trial design comparing k experimental treatments with a standard treatment where patient response is binary. We propose a novel stopping rule, denoted by τ p , as an approximation of the optimal stopping rule, using the optimal stopping rule of a single-arm clinical trial obtained by Backward Induction. We then present an example of a double-arm (k=2) clinical trial where we use a simulation-based algorithm together with τ p to estimate the expected utility of continuing and compare our estimates with exact values obtained by an implementation of Backward Induction. For trials with more than two treatment arms, we evaluate τ p by studying its operating characteristics in a three-arm trial example. Results from these examples show that our approximate trial design has attractive properties and hence offers a relevant solution to the problem posed by Backward Induction.  相似文献   

7.
For raw optical density (ROD) data, such as those generated in biological assays employing an ELISA plate reader, EDp-optimal designs are identified for a family of homogeneous non-linear models with two parameters. In every case, the theoretical EDp-optimal design is a design with one or two support points. These theoretical optimal designs might not be suitable for many practical applications. To overcome this shortcoming, we have specified EDp-optimal designs within the class of k-point equally spaced and uniform designs. The efficiency robustness of these designs with respect to initial nominal values of the parameters have been investigated.  相似文献   

8.
A common problem in analysis of variance is testing for heterogeneity of different subsets of the full set of k population means. A step-down procedure tests a given subset of p means only after rejecting homogeneity for all sets that contain it. The Peritz and Gabriel closed procedure rejects homogeneity for the subset if every partition of the k means that includes the subset includes some rejected set. The Begun and Gabriel closure algorithm reduces computations, but the number of tests still increases exponentially with respect to the number of complementary means, m=kp. We propose a new algorithm that tests only the m−1 pairs of adjacent ordered complementary sample means. Our algorithm may be used with analyses of variance test statistics in balanced and unbalanced designs, and with Studentized ranges except in extremely unbalanced designs. Seaman, Levin, and Serlin proposed a more powerful closure criterion that cannot exploit the Begun and Gabriel algorithm. We propose a new algorithm in this case as well.  相似文献   

9.
The minimum aberration criterion has been advocated for ranking foldovers of 2k−p2kp fractional factorial designs (Li and Lin, 2003); however, a minimum aberration design may not maximize the number of clear low-order effects. We propose using foldover plans that sequentially maximize the number of clear low-order effects in the combined (initial plus foldover) design and investigate the extent to which these foldover plans differ from those that are optimal under the minimum aberration criterion. A small catalog is provided to summarize the results.  相似文献   

10.
ABSTRACT

In this article, we consider the construction of minimum aberration 2n ? k: 2p designs with respect to some existing combined wordlength patterns, where a 2n ? k: 2p design is a blocked two-level design with n treatment factors, 2p blocks, and N = 2q runs with q = n ? k. Two methods are proposed for two situations: n ? 2q ? p ? 1 and n > N/2. These methods enable us to obtain some new minimum aberration 2n ? k: 2p designs from existing minimum aberration unblocked and blocked designs. Examples are included to illustrate the theory.  相似文献   

11.
Saha and Mohanty (1970) presented a main effect fold-over design consisting of 14 treatment combinations of the 24×33 factorial, which had the nice property of being even balanced. Calling this design DSM, this paper establishes the following specific results: (i) DSM is not d-optimal in the subclass Δe of all 14 point even balanced main effect fold-over designs of the 24×33 factorial; (ii) DSM is not d-optimal in the subclass Δ1e of all 14 point even and odd balanced main effect fold-over designs of the 24×33 factorial; (iii) DSM is even optimal in Δ1 and Δe. In addition to these results two 14 point designs in Δ1 are presented which are d-optimal and via a counter example it is shown that these designs are not odd optimal. Finally, several general matrix algebra results are given which should be useful in resolving d-optimality problems of fold-over designs of the kn11×kn22 factorial.  相似文献   

12.
Two classes of designs of resolution V are constructed using one-factor-at-a-time techniques. They facilitate sequential learning and are more economical in run size than regular 2Vkp designs. Comparisons of D efficiency with other designs are given to assess the suitability of the proposed designs. Their Ds efficiencies can be dramatically improved with the addition of a few runs.  相似文献   

13.
This paper presents the trace of the covariance matrix of the estimates of effects based on a fractional 2m factorial (2m-FF) design T of resolution V for the following two cases: One is the case where T is constructed by adding some restricted assemblies to an orthogonal array. The other is one where T is constructed by removing some restricted assemblies from an orthogonal array of index unity. In the class of 2m-FF designs of resolution V considered here, optimal designs with respect to the trace criterion, i.e. A-optimal, are presented for m = 4, 5, and 6 and for a range of practical values of N (the total number of assemblies). Some of them are better than the corresponding A-optimal designs in the class of balanced fractional 2m factorial designs of resolution V obtained by Srivastava and Chopra (1971b) in such a sense that the trace of the covariance matrix of the estimates is small.  相似文献   

14.
Generalized Bhaskar Rao designs with non-zero elements from an abelian group G are constructed. In particular this paper shows that the necessary conditions are sufficient for the existence of generalized Bhaskar Rao designs with k=3 for the following groups: ?G? is odd, G=Zr2, and G=Zr2×H where 3? ?H? and r?1. It also constructs generalized Bhaskar Rao designs with υ=k, which is equivalent to υ rows of a generalized Hadamard matrix of order n where υ?n.  相似文献   

15.
For a fixed number of runs, not all 2nm designs with resolution III or IV have clear two-factor interactions. Therefore, it is highly desirable to know when resolution III or IV designs can have clear two-factor interactions. In this paper, we provide a unified geometrical study of this problem and give a complete classification of the existence of clear two-factor interactions in regular 2nm designs with resolution III or IV and reveal the structures of these designs.  相似文献   

16.
In this article, we present a study carried out to compare the effectiveness of the normal probability plot (NPP) and a simple dot plot in assessing the significance of the effects in experimental designs with factors at two levels (2 k?p designs). Several groups of students who had just completed a course that covered factorial designs were asked to identify the significant effects in a total of 32 situations, 16 of which were represented using NPPs and the other 16 using dot plots. Although the 32 scenarios were said to be different, there were really only 16 different situations, each of which was represented using the two methods to be compared. A simple graphical analysis shows no evidence that there is a difference between the two procedures. However, in designs with 16 runs there are some cases where NPP seems to give slightly better results.  相似文献   

17.
Exploratory Factor Analysis (EFA) and Principal Component Analysis (PCA) are popular techniques for simplifying the presentation of, and investigating the structure of, an (n×p) data matrix. However, these fundamentally different techniques are frequently confused, and the differences between them are obscured, because they give similar results in some practical cases. We therefore investigate conditions under which they are expected to be close to each other, by considering EFA as a matrix decomposition so that it can be directly compared with the data matrix decomposition underlying PCA. Correspondingly, we propose an extended version of PCA, called the EFA-like PCA, which mimics the EFA matrix decomposition in the sense that they contain the same unknowns. We provide iterative algorithms for estimating the EFA-like PCA parameters, and derive conditions that have to be satisfied for the two techniques to give similar results. Throughout, we consider separately the cases n>p and pn. All derived algorithms and matrix conditions are illustrated on two data sets, one for each of these two cases.  相似文献   

18.
In experiments in which the response to a treatment can be affected by other treatments, the interference model with neighbor effects is usually used. It is known that circular neighbor balanced designs (CNBDs) are universally optimal under such a model if the neighbor effects are fixed (Druilhet, 1999) or random (4 and 7). However, such designs cannot exist for every combination of design parameters. In the class of block designs with the same number of treatments as experimental units per block, a CNBD cannot exist if the number of blocks, b  , is equal to p(t−1)±1p(t1)±1, where p is a positive integer and t is the number of treatments. Filipiak et al. (2008) gave the structure of the left-neighboring matrix of E-optimal complete block designs with p  =1 under the model with fixed neighbor effects. The purpose of this paper is to generalize E-optimality results for designs with p∈NpN assuming random neighbor effects.  相似文献   

19.
New fractional 2m factorial designs obtained by assigning factors to fractions of m columns of new saturated two symbol orthogonal arrays which are not isomorphic to the usual ones are proposed. Contrary to the usual assignment, examples show that some main effects are not totally but partially confounded with several two-factor interactions. Moreover, the recovery of the former from such partial confounding is possible in some cases by eliminating the latter.  相似文献   

20.
J. Gladitz  J. Pilz 《Statistics》2013,47(4):491-506
We deal with experimental designs minimizing the mean square error of the linear BAYES estimator for the parameter vector of a multiple linear regression model where the experimental region is the k-dimensional unit sphere. After computing the uniquely determined optimum information matrix, we construct, separately for the homogeneous and the inhomogeneous model, both approximate and exact designs having such an information matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号