首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

2.
A general framework is proposed for modelling clustered mixed outcomes. A mixture of generalized linear models is used to describe the joint distribution of a set of underlying variables, and an arbitrary function relates the underlying variables to be observed outcomes. The model accommodates multilevel data structures, general covariate effects and distinct link functions and error distributions for each underlying variable. Within the framework proposed, novel models are developed for clustered multiple binary, unordered categorical and joint discrete and continuous outcomes. A Markov chain Monte Carlo sampling algorithm is described for estimating the posterior distributions of the parameters and latent variables. Because of the flexibility of the modelling framework and estimation procedure, extensions to ordered categorical outcomes and more complex data structures are straightforward. The methods are illustrated by using data from a reproductive toxicity study.  相似文献   

3.
Summary.  Longitudinal modelling of lung function in Duchenne's muscular dystrophy is complicated by a mixture of both growth and decline in lung function within each subject, an unknown point of separation between these phases and significant heterogeneity between individual trajectories. Linear mixed effects models can be used, assuming a single changepoint for all cases; however, this assumption may be incorrect. The paper describes an extension of linear mixed effects modelling in which random changepoints are integrated into the model as parameters and estimated by using a stochastic EM algorithm. We find that use of this 'mixture modelling' approach improves the fit significantly.  相似文献   

4.
Summary.  A fundamental issue in applied multivariate extreme value analysis is modelling dependence within joint tail regions. The primary focus of this work is to extend the classical pseudopolar treatment of multivariate extremes to develop an asymptotically motivated representation of extremal dependence that also encompasses asymptotic independence. Starting with the usual mild bivariate regular variation assumptions that underpin the coefficient of tail dependence as a measure of extremal dependence, our main result is a characterization of the limiting structure of the joint survivor function in terms of an essentially arbitrary non-negative measure that must satisfy some mild constraints. We then construct parametric models from this new class and study in detail one example that accommodates asymptotic dependence, asymptotic independence and asymmetry within a straightforward parsimonious parameterization. We provide a fast simulation algorithm for this example and detail likelihood-based inference including tests for asymptotic dependence and symmetry which are useful for submodel selection. We illustrate this model by application to both simulated and real data. In contrast with the classical multivariate extreme value approach, which concentrates on the limiting distribution of normalized componentwise maxima, our framework focuses directly on the structure of the limiting joint survivor function and provides significant extensions of both the theoretical and the practical tools that are available for joint tail modelling.  相似文献   

5.
Bayesian finite mixture modelling is a flexible parametric modelling approach for classification and density fitting. Many areas of application require distinguishing a signal from a noise component. In practice, it is often difficult to justify a specific distribution for the signal component; therefore, the signal distribution is usually further modelled via a mixture of distributions. However, modelling the signal as a mixture of distributions is computationally non-trivial due to the difficulties in justifying the exact number of components to be used and due to the label switching problem. This paper proposes the use of a non-parametric distribution to model the signal component. We consider the case of discrete data and show how this new methodology leads to more accurate parameter estimation and smaller false non-discovery rate. Moreover, it does not incur the label switching problem. We show an application of the method to data generated by ChIP-sequencing experiments.  相似文献   

6.
Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the parameters of multivariate mixed Poisson models when the mixing distribution is a multivariate Gamma distribution. The consistency and asymptotic normality of this estimator are derived. Simulations conducted on synthetic data illustrate these results and show that the proposed estimator outperforms classical estimators based on the method of moments. An application to change detection in low-flux images is also investigated.  相似文献   

7.
In this article, an alternative estimation approach is proposed to fit linear mixed effects models where the random effects follow a finite mixture of normal distributions. This heterogeneity linear mixed model is an interesting tool since it relaxes the classical normality assumption and is also perfectly suitable for classification purposes, based on longitudinal profiles. Instead of fitting directly the heterogeneity linear mixed model, we propose to fit an equivalent mixture of linear mixed models under some restrictions which is computationally simpler. Unlike the former model, the latter can be maximized analytically using an EM-algorithm and the obtained parameter estimates can be easily used to compute the parameter estimates of interest.  相似文献   

8.
In some situations, the distribution of the error terms of a multivariate linear regression model may depart from normality. This problem has been addressed, for example, by specifying a different parametric distribution family for the error terms, such as multivariate skewed and/or heavy-tailed distributions. A new solution is proposed, which is obtained by modelling the error term distribution through a finite mixture of multi-dimensional Gaussian components. The multivariate linear regression model is studied under this assumption. Identifiability conditions are proved and maximum likelihood estimation of the model parameters is performed using the EM algorithm. The number of mixture components is chosen through model selection criteria; when this number is equal to one, the proposal results in the classical approach. The performances of the proposed approach are evaluated through Monte Carlo experiments and compared to the ones of other approaches. In conclusion, the results obtained from the analysis of a real dataset are presented.  相似文献   

9.
We propose a mixture of latent variables model for the model-based clustering, classification, and discriminant analysis of data comprising variables with mixed type. This approach is a generalization of latent variable analysis, and model fitting is carried out within the expectation-maximization framework. Our approach is outlined and a simulation study conducted to illustrate the effect of sample size and noise on the standard errors and the recovery probabilities for the number of groups. Our modelling methodology is then applied to two real data sets and their clustering and classification performance is discussed. We conclude with discussion and suggestions for future work.  相似文献   

10.
Summary.  We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.  相似文献   

11.
Assessment of the time needed to attain steady state is a key pharmacokinetic objective during drug development. Traditional approaches for assessing steady state include ANOVA‐based methods for comparing mean plasma concentration values from each sampling day, with either a difference or equivalence test. However, hypothesis‐testing approaches are ill suited for assessment of steady state. This paper presents a nonlinear mixed effects modelling approach for estimation of steady state attainment, based on fitting a simple nonlinear mixed model to observed trough plasma concentrations. The simple nonlinear mixed model is developed and proposed for use under certain pharmacokinetic assumptions. The nonlinear mixed modelling estimation approach is described and illustrated by application to trough data from a multiple dose trial in healthy subjects. The performance of the nonlinear mixed modelling approach is compared to ANOVA‐based approaches by means of simulation techniques. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
We propose a Bayesian nonparametric instrumental variable approach under additive separability that allows us to correct for endogeneity bias in regression models where the covariate effects enter with unknown functional form. Bias correction relies on a simultaneous equations specification with flexible modeling of the joint error distribution implemented via a Dirichlet process mixture prior. Both the structural and instrumental variable equation are specified in terms of additive predictors comprising penalized splines for nonlinear effects of continuous covariates. Inference is fully Bayesian, employing efficient Markov chain Monte Carlo simulation techniques. The resulting posterior samples do not only provide us with point estimates, but allow us to construct simultaneous credible bands for the nonparametric effects, including data-driven smoothing parameter selection. In addition, improved robustness properties are achieved due to the flexible error distribution specification. Both these features are challenging in the classical framework, making the Bayesian one advantageous. In simulations, we investigate small sample properties and an investigation of the effect of class size on student performance in Israel provides an illustration of the proposed approach which is implemented in an R package bayesIV. Supplementary materials for this article are available online.  相似文献   

13.
The Weibull distribution is a natural starting point in the modelling of failure times in reliability, material strength data and many other applications that involve lifetime data. In recent years there has been a growing interest in modelling heterogeneity within this context. A natural approach is to consider a mixture, either discrete or continuous, of Weibull distributions. A judicious choice of mixing distribution yields a tractable and flexible generalization of the Weibull distribution. In this note a score test for detecting heterogeneity in this context is discussed and illustrated using some infant nutrition data.  相似文献   

14.
Count data with excess zeros are common in many biomedical and public health applications. The zero-inflated Poisson (ZIP) regression model has been widely used in practice to analyze such data. In this paper, we extend the classical ZIP regression framework to model count time series with excess zeros. A Markov regression model is presented and developed, and the partial likelihood is employed for statistical inference. Partial likelihood inference has been successfully applied in modeling time series where the conditional distribution of the response lies within the exponential family. Extending this approach to ZIP time series poses methodological and theoretical challenges, since the ZIP distribution is a mixture and therefore lies outside the exponential family. In the partial likelihood framework, we develop an EM algorithm to compute the maximum partial likelihood estimator (MPLE). We establish the asymptotic theory of the MPLE under mild regularity conditions and investigate its finite sample behavior in a simulation study. The performances of different partial-likelihood based model selection criteria are compared in the presence of model misspecification. Finally, we present an epidemiological application to illustrate the proposed methodology.  相似文献   

15.
Summary.  On-line auctions pose many challenges for the empirical researcher, one of which is the effective and reliable modelling of price paths. We propose a novel way of modelling price paths in eBay's on-line auctions by using functional data analysis. One of the practical challenges is that the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data, which can be difficult if the data are irregularly distributed. We present a new approach that can overcome this challenge. The approach is based on the ideas of mixed models. Specifically, we propose a semiparametric mixed model with boosting to recover the functional object. As well as being able to handle sparse and unevenly distributed data, the model also results in conceptually more meaningful functional objects. In particular, we motivate our method within the framework of eBay's on-line auctions. On-line auctions produce monotonic increasing price curves that are often correlated across auctions. The semiparametric mixed model accounts for this correlation in a parsimonious way. It also manages to capture the underlying monotonic trend in the data without imposing model constraints. Our application shows that the resulting functional objects are conceptually more appealing. Moreover, when used to forecast the outcome of an on-line auction, our approach also results in more accurate price predictions compared with standard approaches. We illustrate our model on a set of 183 closed auctions for Palm M515 personal digital assistants.  相似文献   

16.
Abstract. Zero‐inflated data abound in ecological studies as well as in other scientific fields. Non‐parametric regression with zero‐inflated response may be studied via the zero‐inflated generalized additive model (ZIGAM) with a probabilistic mixture distribution of zero and a regular exponential family component. We propose the (partially) constrained ZIGAM, which assumes that some covariates affect the probability of non‐zero‐inflation and the regular exponential family distribution mean proportionally on the link scales. When the assumption obtains, the new approach provides a unified framework for modelling zero‐inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We develop an iterative estimation algorithm, and discuss the confidence interval construction of the estimator. Some asymptotic properties are derived. We also propose a Bayesian model selection criterion for choosing between the unconstrained and constrained ZIGAMs. The new methods are illustrated with both simulated data and a real application in jellyfish abundance data analysis.  相似文献   

17.
In medical studies, it is often of interest to characterize the relationship between a time-to-event and covariates, not only time-independent but also time-dependent. Time-dependent covariates are generally measured intermittently and with error. Recent interests focus on the proportional hazards framework, with longitudinal data jointly modeled through a mixed effects model. However, approaches under this framework depend on the normality assumption of the error, and might encounter intractable numerical difficulties in practice. This motivates us to consider an alternative framework, that is, the additive hazards model, about which little research has been done when time-dependent covariates are measured with error. We propose a simple corrected pseudo-score approach for the regression parameters with no assumptions on the distribution of the random effects and the error beyond those for the variance structure of the latter. The estimator has an explicit form and is shown to be consistent and asymptotically normal. We illustrate the method via simulations and by application to data from an HIV clinical trial.  相似文献   

18.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.  相似文献   

19.
The nonparametric version of the classical mixed model is considered and the common hypotheses of (parametric) main effects and interactions are reformulated in a nonparametric setup. To test these nonparametric hypotheses, the asymptotic distributions of quadratic forms of rank statistics are derived in a general framework which enables the derivation of the statistics for the nonparametric hypotheses of the fixed treatment effects and interactions in an arbitrary mixed model. The procedures given here are not restricted to semiparametric models or models with additive effects. Moreover, they are robust to outliers since only the ranks of the observations are needed. They are also applicable to pure ordinal data and since no continuity of the distribution functions is assumed, they can also be applied to data with ties. Some approximations for small sample sizes are suggested and analyzed in a simulation study. The application of the statistics and the interpretation of the results is demonstrated in several worked-out examples where some data sets given in the literature are re-analyzed.  相似文献   

20.
The paper reviews the Lee-Carter modelling framework, illustrated with an application, and then extends the framework through the development of a wider class of generalised, parametric, non-linear models. The choice of error distribution is also generalised. These extensions permit the modelling and extrapolation of age-specific cohort effects as well as the more familiar age-specific period effects: the age-period-cohort version of the model is discussed with a worked example. The paper also provides a comparative study of simulation strategies for assessing risk in mortality rate predictions and the associated forecast estimates of life expectancy and annuity values in both period and cohort perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号