首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two-stage k-sample designs for the ordered alternative problem   总被引:2,自引:0,他引:2  
In preclinical studies and clinical dose-ranging trials, the Jonckheere-Terpstra test is widely used in the assessment of dose-response relationships. Hewett and Spurrier (1979) presented a two-stage analog of the test in the context of large sample sizes. In this paper, we propose an exact test based on Simon's minimax and optimal design criteria originally used in one-arm phase II designs based on binary endpoints. The convergence rate of the joint distribution of the first and second stage test statistics to the limiting distribution is studied, and design parameters are provided for a variety of assumed alternatives. The behavior of the test is also examined in the presence of ties, and the proposed designs are illustrated through application in the planning of a hypercholesterolemia clinical trial. The minimax and optimal two-stage procedures are shown to be preferable as compared with the one-stage procedure because of the associated reduction in expected sample size for given error constraints.  相似文献   

2.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

3.
For the cancer clinical trials with immunotherapy and molecularly targeted therapy, time-to-event endpoint is often a desired endpoint. In this paper, we present an event-driven approach for Bayesian one-stage and two-stage single-arm phase II trial designs. Two versions of Bayesian one-stage designs were proposed with executable algorithms and meanwhile, we also develop theoretical relationships between the frequentist and Bayesian designs. These findings help investigators who want to design a trial using Bayesian approach have an explicit understanding of how the frequentist properties can be achieved. Moreover, the proposed Bayesian designs using the exact posterior distributions accommodate the single-arm phase II trials with small sample sizes. We also proposed an optimal two-stage approach, which can be regarded as an extension of Simon's two-stage design with the time-to-event endpoint. Comprehensive simulations were conducted to explore the frequentist properties of the proposed Bayesian designs and an R package BayesDesign can be assessed via R CRAN for convenient use of the proposed methods.  相似文献   

4.
Abstract

In this paper, we propose a Bayesian two-stage design with changing hypothesis test by bridging a single-arm study and a double-arm randomized trial in one phase II clinical trial based on continuous endpoints rather than binary endpoints. We have also calibrated with respect to frequentist and Bayesian error rates. The proposed design minimizes the Bayesian expected sample size if the new candidate has low or high efficacy activity subject to the constraint upon error rates in both frequentist and Bayesian perspectives. Tables of designs for various combinations of design parameters are also provided.  相似文献   

5.
For two‐arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre‐specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In recent years, seamless phase I/II clinical trials have drawn much attention, as they consider both toxicity and efficacy endpoints in finding an optimal dose (OD). Engaging an appropriate number of patients in a trial is a challenging task. This paper attempts a dynamic stopping rule to save resources in phase I/II trials. That is, the stopping rule aims to save patients from unnecessary toxic or subtherapeutic doses. We allow a trial to stop early when widths of the confidence intervals for the dose-response parameters become narrower or when the sample size is equal to a predefined size, whichever comes first. The simulation study of dose-response scenarios in various settings demonstrates that the proposed stopping rule can engage an appropriate number of patients. Therefore, we suggest its use in clinical trials.  相似文献   

7.
Instead of using traditional separate phase I and II trials, in this article, we propose using a parallel three-stage phase I/II design, incorporating a dose expansion approach to flexibly evaluate the safety and efficacy of dose levels, and to select the optimal dose. In the proposed design, both the toxicity and efficacy responses are binary endpoints. A 3+3-based procedure is used for initial period of dose escalation at stage 1; at this level, the dose can be expanded to stage 2 for exploratory efficacy studies of phase IIa, while simultaneously, the safety testing can advance to a higher dose level. A beta-binomial model is used to model the efficacy responses. There are two placebo-controlled randomization interim monitoring analyses at stage 2 to select the promising doses to be recommended to stage 3 for further efficacy studies of phase IIb. An adaptive randomization approach is used to assign more patients to doses with higher efficacy levels at stage 3. We examine the properties of the proposed design through extensive simulation studies by using R programming language, and also compare the new design with the conventional design and a competing adaptive Bayesian design. The simulation results show that our design can efficiently assign more patients to doses with higher efficacy levels and is superior to the two competing designs in terms of total sample size reduction.  相似文献   

8.
The phase II clinical trials often use the binary outcome. Thus, accessing the success rate of the treatment is a primary objective for the phase II clinical trials. Reporting confidence intervals is a common practice for clinical trials. Due to the group sequence design and relatively small sample size, many existing confidence intervals for phase II trials are much conservative. In this paper, we propose a class of confidence intervals for binary outcomes. We also provide a general theory to assess the coverage of confidence intervals for discrete distributions, and hence make recommendations for choosing the parameter in calculating the confidence interval. The proposed method is applied to Simon's [14] optimal two-stage design with numerical studies. The proposed method can be viewed as an alternative approach for the confidence interval for discrete distributions in general.  相似文献   

9.
Crossover designs have some advantages over standard clinical trial designs and they are often used in trials evaluating the efficacy of treatments for infertility. However, clinical trials of infertility treatments violate a fundamental condition of crossover designs, because women who become pregnant in the first treatment period are not treated in the second period. In previous research, to deal with this problem, some new designs, such as re‐randomization designs, and analysis methods including the logistic mixture model and the beta‐binomial mixture model were proposed. Although the performance of these designs and methods has previously been evaluated in large‐scale clinical trials with sample sizes of more than 1000 per group, the actual sample sizes of infertility treatment trials are usually around 100 per group. The most appropriate design and analysis for these moderate‐scale clinical trials are currently unclear. In this study, we conducted simulation studies to determine the appropriate design and analysis method of moderate‐scale clinical trials for irreversible endpoints by evaluating the statistical power and bias in the treatment effect estimates. The Mantel–Haenszel method had similar power and bias to the logistic mixture model. The crossover designs had the highest power and the smallest bias. We recommend using a combination of the crossover design and the Mantel–Haenszel method for two‐period, two‐treatment clinical trials with irreversible endpoints. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Planning and conducting interim analysis are important steps for long-term clinical trials. In this article, the concept of conditional power is combined with the classic analysis of variance (ANOVA) for a study of two-stage sample size re-estimation based on interim analysis. The overall Type I and Type II errors would be inflated by interim analysis. We compared the effects on re-estimating sample sizes with and without the adjustment of Type I and Type II error rates due to interim analysis.  相似文献   

12.
Owing to increased costs and competition pressure, drug development becomes more and more challenging. Therefore, there is a strong need for improving efficiency of clinical research by developing and applying methods for quantitative decision making. In this context, the integrated planning for phase II/III programs plays an important role as numerous quantities can be varied that are crucial for cost, benefit, and program success. Recently, a utility‐based framework has been proposed for an optimal planning of phase II/III programs that puts the choice of decision boundaries and phase II sample sizes on a quantitative basis. However, this method is restricted to studies with a single time‐to‐event endpoint. We generalize this procedure to the setting of clinical trials with multiple endpoints and (asymptotically) normally distributed test statistics. Optimal phase II sample sizes and go/no‐go decision rules are provided for both the “all‐or‐none” and “at‐least‐one” win criteria. Application of the proposed method is illustrated by drug development programs in the fields of Alzheimer disease and oncology.  相似文献   

13.
14.
Multiple-arm dose-response superiority trials are widely studied for continuous and binary endpoints, while non-inferiority designs have been studied recently in two-arm trials. In this paper, a unified asymptotic formulation of a sample size calculation for k-arm (k>0) trials with different endpoints (continuous, binary and survival endpoints) is derived for both superiority and non-inferiority designs. The proposed method covers the sample size calculation for single-arm and k-arm (k> or =2) designs with survival endpoints, which has not been covered in the statistic literature. A simple, closed form for power and sample size calculations is derived from a contrast test. Application examples are provided. The effect of the contrasts on the power is discussed, and a SAS program for sample size calculation is provided and ready to use.  相似文献   

15.
Historical control trials compare an experimental treatment with a previously conducted control treatment. By assigning all recruited samples to the experimental arm, historical control trials can better identify promising treatments in early phase trials compared with randomized control trials. Existing designs of historical control trials with survival endpoints are based on asymptotic normal distribution. However, it remains unclear whether the asymptotic distribution of the test statistic is close enough to the true distribution given relatively small sample sizes in early phase trials. In this article, we address this question by introducing an exact design approach for exponentially distributed survival endpoints, and compare it with an asymptotic design in both real examples and simulation examples. Simulation results show that the asymptotic test could lead to bias in the sample size estimation. We conclude the proposed exact design should be used in the design of historical control trials.  相似文献   

16.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.

Bayesian monitoring strategies based on predictive probabilities are widely used in phase II clinical trials that involve a single efficacy binary variable. The essential idea is to control the predictive probability that the trial will show a conclusive result at the scheduled end of the study, given the information at the interim stage and the prior beliefs. In this paper, we present an extension of this approach to incorporate toxicity considerations in single-arm phase II trials. We consider two binary endpoints representing response and toxicity of the experimental treatment and define the result as successful at the conclusion of the study if the posterior probability of an high efficacy and that of a small toxicity are both sufficiently large. At any interim look, the Multinomial-Dirichlet distribution provides the predictive probability of each possible combination of future efficacy and toxicity outcomes. It is exploited to obtain the predictive probability that the trial will yield a positive outcome, if it continues to the planned end. Different possible interim situations are considered to investigate the behaviour of the proposed predictive rules and the differences with the monitoring strategies based on posterior probabilities are highlighted. Simulation studies are also performed to evaluate the frequentist operating characteristics of the proposed design and to calibrate the design parameters.

  相似文献   

18.
The conventional phase II trial design paradigm is to make the go/no-go decision based on the hypothesis testing framework. Statistical significance itself alone, however, may not be sufficient to establish that the drug is clinically effective enough to warrant confirmatory phase III trials. We propose the Bayesian optimal phase II trial design with dual-criterion decision making (BOP2-DC), which incorporates both statistical significance and clinical relevance into decision making. Based on the posterior probability that the treatment effect reaches the lower reference value (statistical significance) and the clinically meaningful value (clinical significance), BOP2-DC allows for go/consider/no-go decisions, rather than a binary go/no-go decision. BOP2-DC is highly flexible and accommodates various types of endpoints, including binary, continuous, time-to-event, multiple, and coprimary endpoints, in single-arm and randomized trials. The decision rule of BOP2-DC is optimized to maximize the probability of a go decision when the treatment is effective or minimize the expected sample size when the treatment is futile. Simulation studies show that the BOP2-DC design yields desirable operating characteristics. The software to implement BOP2-DC is freely available at www.trialdesign.org .  相似文献   

19.
The success rate of drug development has been declined dramatically in recent years and the current paradigm of drug development is no longer functioning. It requires a major undertaking on breakthrough strategies and methodology for designs to minimize sample sizes and to shorten duration of the development. We propose an alternative phase II/III design based on continuous efficacy endpoints, which consists of two stages: a selection stage and a confirmation stage. For the selection stage, a randomized parallel design with several doses with a placebo group is employed for selection of doses. After the best dose is chosen, the patients of the selected dose group and placebo group continue to enter the confirmation stage. New patients will also be recruited and randomized to receive the selected dose or placebo group. The final analysis is performed with the cumulative data of patients from both stages. With the pre‐specified probabilities of rejecting the drug at each stage, sample sizes and critical values for both stages can be determined. As it is a single trial with controlling overall type I and II error rates, the proposed phase II/III adaptive design may not only reduce the sample size but also improve the success rate. An example illustrates the applications of the proposed phase II/III adaptive design. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The main goal of phase I cancer clinical trials is to determine the highest dose of a new therapy associated with an acceptable level of toxicity for the use in a subsequent phase II trial. The continual reassessment method (CRM) [O’Quigley, J., Pepe, M., Fisher, L., 1990. Continual reassessment method: a practical design for phase I clinical trials in cancer. Biometrics 46, 33–48] and escalation with overdose control (EWOC) [Babb, J., Rogatko, A., Zacks, S., 1998. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statist. Med. 17 (10), 1103–1120] are two model-based designs used for phase I cancer clinical trials. A few modifications of the (original) CRM and EWOC have been made by many authors. In this paper, we show how CRM and EWOC can be unified and present a hybrid design. We study the characteristics of the approach of the hybrid design. The comparisons of the three designs (CRM, EWOC, and the hybrid design) are presented by convergence rates and overdose proportions. The simulation results show that the hybrid design generally has faster convergence rates than EWOC and smaller overdose proportions than CRM, especially when the true maximum tolerated dose (MTD) is above the mid-level of the dose range considered. The performance of these three designs is also evaluated in terms of sensitivity to outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号