首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对传统的滚动轴承智能诊断模型计算效率低和准确率欠佳问题,课题组提出一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和双向长短时记忆(bidirectional long short term memory network,BiLSTM)网络相结合的滚动轴承故障诊断模型。该模型利用MOMEDA方法增强故障特征,并结合遗传算法(genetic algorithm,GA)对BiLSTM模型参数进行优化,实现滚动轴承智能、高效及鲁棒性诊断。利用该模型对经典轴承数据集以及牵引电机轴承故障数据集进行验证,平均准确率达到了99.63%,分别比传统卷积神经网络(convolutional neural network,CNN)、单层长短时记忆网络(long short term memory network,LSTM)、双向长短时记忆网络和最新的CNN LSTM模型高16.02%,9.98%,7.01%和5.65%,验证了该模型的有效性和优越性。  相似文献   

2.
为解决集合经验模态(EEMD)存在分量重构误差大和提取的故障特征不明显问题,课题组提出一种自适应噪声完备集合经验模态分解(CEEMDAN)辅助快速谱峭度的故障诊断方法。首先采用CEEMDAN将故障信号分解为多个IMF分量,计算分量的谱峭度值,选择峭度和相关度最大的分量进行重构;然后通过快速谱峭度图确定最大共振频带,进行带通滤波分析,获得故障信息;最后采用某滚动轴承实验数据分别对内圈故障和外圈故障进行实验分析。结果表明:与原始故障信号相比,该方法获得的包络谱更清晰,故障频率更明显,内圈故障频率为162 Hz,外圈故障频率为107 Hz。该方法提取故障特征突出,可以得到有效的故障频带。  相似文献   

3.
针对变负载工况下单尺度CNN提取滚动轴承健康状态特征不充分的问题,提出了一种DSCNN-BiLSTM诊断模型。该模型基于粗粒度化和平均池化层的理论基础,通过双尺度卷积神经网络结合双向长短时记忆网络,对滚动轴承振动信号进行空间维度特征和时间序列特征的提取,实现端对端的滚动轴承故障诊断。通过设置2种不同变负载工况实验,采用DSCNN-BiLSTM模型进行滚动轴承故障特征提取,平均准确率分别达到了97.55%和98.07%,有效提高了在变负载工况下的滚动轴承故障诊断准确率,为滚动轴承健康状态识别提供了关键技术。  相似文献   

4.
利用传统故障诊断方法对滚动轴承进行诊断时,存在故障特征提取困难以及故障模式难以辨识的问题。针对此问题,提出了一种基于多重同步挤压变换以及深度脊波卷积自编码网络的智能故障诊断方法。首先,利用多重同步挤压变换处理含噪信号能力强、具有优越的时频分解特性的特点,将采集的轴承故障信号进行MSST处理,得到分辨率较高的时频图像。然后,利用深度脊波卷积自编码网络自身泛化性能强、能够有效挖掘数据特征的特点,建立深度脊波卷积自编码网络识别模型。将降维至适当大小的时频图像输入到该模型系统中,进行自动特征提取和故障识别。实验结果表明,该方法提取故障特征信号能力较高,并能够有效地识别出不同的故障类型。  相似文献   

5.
针对滚动轴承故障特征很难提取及传统故障诊断方法准确率偏低的问题,提出一种基于Dropout的改进卷积神经网络(Dropout CNN)结构,可以无需预先提取滚动轴承振动信号的故障特征,直接端到端的实现滚动轴承故障诊断。该方法以振动信号为监测信号,使用傅里叶变换生成振动 信号频谱图,以此作为整个系统的输入,利用卷积神经网络强大的特征提取能力可以自动完成故障特征提取以及故障识别。试验结果表明该方法平均诊断准确率 高达99.5%。该方法实现了大量样本下滚动轴承不同故障类型的故障特征自适应提取与故障状态的准确识别。  相似文献   

6.
针对旋转设备在复杂运行工况下,滚动轴承故障信号特征难以准确提取及识别的问题,结合深度残差收缩网络(depth residual contraction network,DRSN)的优势,将同步提取变换(simultaneous extraction transformation,SET)和深度残差收缩网络结合的故障诊断方法应用于轴承故障诊断。首先利用同步提取变换时频分辨率高的特点,对采集到的滚动轴承外圈信号进行模态分解和处理,得到分解后的时频图像:然后对图像进行灰度处理,并进行降维,以适合DRSN模型输入,最后进行故障特征识别,实现滚动轴承故障诊断。实验结果表明,该方法有效实现了复杂工况下对滚动轴承故障信号的特征提取,提高了故障识别率。  相似文献   

7.
针对滚动轴承早期故障信号易被强烈的背景噪声淹没及故障特征难以提取的特点,提出了基于变分模态分解(VMD)和形态学滤波相结合的滚动轴承早期故障诊断方法。首先利用VMD将早期故障信号自适应地分解为一系列IMF分量,然后选择峭度值最大的前两个IMF分量重构,并对重构信号进行形态学滤波,最后通过Teager能量算子计算重构分量的能量谱来提取滚动轴承的故障频率,判断故障类型。将该方法应用于滚动轴承仿真信号与实际故障数据中,分析结果表明该方法能够更加有效提取故障特征频率信息,实现了滚动轴承故障的精确诊断。  相似文献   

8.
为解决滚动轴承微弱故障信号不明显、识别故障类型准确率不高及变分模态分解(VMD)分解时参数主要依靠人为设定的问题,提出一种基于麻雀搜索算法(SSA)优化VMD参数与BP神经网络相结合的故障诊断方法。首先,使用麻雀搜索算法对VMD分解的模态分解个数及惩罚因子进行优化,搜索全局得出最优参数组合;利用优化后的参数对故障信号进行VMD分解,将分解后的本征模态分量导入BP神经网络进行模式识别。结果表明:与EMD、未优化VMD相比,优化参数后的VMD具有更高的故障诊断率99.53%,使故障诊断效果进一步提升。  相似文献   

9.
针对滚动轴承在实际运行环境中同时存在变负荷和变噪声的复合工况干扰而产生的故障诊断效果不理想的问题,提出了一种用于滚动轴承变工况故障诊断的一维残差卷积神经网络方法。将归一化后整理完的原始轴承振动信号输入到网络模型中,利用具有残差连接的多个一维卷积层提取特征,再经过多个卷积池化,最后输入到Softmax层进行分类,输出轴承振动信号的故障类型。将所提方法与一维卷积神经网络(CNN)、LeNet-5和AlexNet几个经典模型进行对比分析,结果表明,本文方法在变噪声实验和变负荷实验中的平均准确率分别为94.16%和95.31%,均高于其他经典神经网路,具有较强的抗噪性和泛化性能力。  相似文献   

10.
总体经验模式分解 (Ensemble Empirical Mode Decomposition, EEMD) 方法由于其自适应性和抗混叠的特性,在轴承故障诊断领域得到广泛应用。针对总体经验模式分解 (Ensemble Empirical Mode Decomposition, EEMD) 方法中参数难以准确获取的问题,提出了基于改进的EEMD分解和Teager能量算子的滚动轴承故障诊断方法。首先对故障信号进行预处理,自动获取EEMD方法中的加入白噪声大小和总体平均次数两个重要参数。之后对信号进行EEMD分解,得到若干个本征模态分量 (Intrinsic Mode Function, IMF),利用峭度准则选取其中峭度最大的分量并进行Teager能量算子解调,最后通过能量谱识别出滚动轴承的工作状态和故障类型。将该方法应用到滚动轴承仿真故障数据和实际数据中,实验结果表明,该方法可有效提取滚动轴承故障特征频率信息,验证了所提方法的可行性。  相似文献   

11.
针对滚动轴承故障诊断问题,提出一种融合一维卷积神经网络(1D CNN)和麻雀算法优化支持向量机(SSA-SVM)的网络结构。该网络结构通过卷积运算对原始时域振动信号直接进行特征提取,将提取到的特征输入到麻雀算法优化的支持向量机中,使用支持向量机代替Softmax进行分类。利用滚动轴承故障数据进行验证,此方法故障诊断精度高达0.983,高于其他网络结构,且整体网络结构简单,有一定实际应用价值。  相似文献   

12.
在处理非平稳振动信号时,经验模式分解(EMD)的应用较为广泛。针对滚动轴承的早期故障信号中含有强烈的背景噪声,诊断效果有时也不够明显的情况,本文提出了多通道相关-经验模式分解方法。首先通过EMD将滚动轴承故障信号分解成若干本征模态函数(IMF)分量;然后对IMF分量进行多相关处理,取相关性最强的IMF分量进行自适应重构;最后通过循环谱分析识别出滚动轴承的故障类型。将该方法应用到滚动轴承的仿真故障数据和实际数据中,分析结果表明,该方法可以更加有效地提取滚动轴承故障特征频率信息,突出故障频率。  相似文献   

13.
为解决传统信号处理方法提取滚动轴承故障特征不精确和Teager能量算子解调信号的解调频率和幅值误差较大的问题,课题组提出一种基于互补集合经验模态分解和3点对称差分能量算子结合的轴承故障特征提取方法CEEMD DEO3S。课题组首先对滚动轴承进行CEEMD分解前进行去噪处理来增强信号的故障脉冲;然后利用CEEMD将去噪后信号分解为一系列固有模态函数,并依据相关系数原则选择最能表征故障的敏感分量,重构后进行DEO3S解调,依据解调后得到的幅值和频率计算信号的包络谱。实验分析表明:所提方法解调信号的误差更小,提取轴承故障频率更精确。  相似文献   

14.
为了从齿轮振动信号中提取出包含有故障信息的特征频率,针对现有EMD(Empirical Mode Decomposition)降噪算法中的IMF重构问题,提出了基于EMD模态相关和形态学降噪的齿轮故障诊断方法。首先采用EMD将目标信号分解为若干个IMF分量之和,利用模态相关分选准则选取噪声主导分量和信号主导分量的分界点,并利用各个IMF分量的自相关函数来验证该准则的正确性;然后将选到的噪声主导分量进行形态学滤波,利用峭度准则优化形态学结构元素尺度,自适应的寻求最优解;最后将滤波后的噪声分量与剩余分量进行重构,得到滤波重构信号,通过频谱分析识别齿轮故障特征频率。仿真数据和齿轮裂纹故障实验测试数据的分析表明,该方法滤波效果理想,能更有效地提取出齿轮故障特征。  相似文献   

15.
针对滚动轴承故障信号在初期特征频率微弱而且难以提取的问题,提出一种基于局部特征尺度分解(LCD)和奇异值分解相结合的故障诊断方式。首先对采集到的目标信号进行LCD分解,得到一系列内禀模态分量(ISC),然后再通过峭度—相关系数筛选用来重构真实的ISC分量,利用奇异值分解对重构分量进行分解。接着求出所对应的差分谱,根据差分谱理论再次进行重构,最后再对重构信号进行能量算子包络解调。通过实验验证,相比于传统包络解调,所提的方法能够有效地提取出故障轴承的特征频率。  相似文献   

16.
针对滚动轴承退化数据的复杂性和传统的寿命预测方法不能充分利用数据的相关性从而导致预测精度不高的问题,课题组提出了一种基于多频率尺度样本熵(SE)和长短期记忆神经网络(LSTM)相结合的寿命预测模型。该模型采用互补集成经验模态分解(CEEMD)结合相关系数分析,从滚动轴承振动信号中提取包含主要退化信息的IMF分量,并提取其样本熵矩阵,用于训练和测试LSTM。通过滚动轴承全寿命试验证明该模型可以准确预测滚动轴承剩余寿命,与BP神经网络和极限学习机(ELM)的预测效果对比验证了该模型的有效性。  相似文献   

17.
目前以数据驱动为基础的深度学习故障诊断方法已经得到了广泛的研究,然而基于深度学习的故障诊断普遍存在需要海量训练数据的不足。为有效克服上述问题,提出了一种基于长短期记忆网络(long short-term memory,LSTM)与迁移学习结合的滚动轴承智能故障诊断方法。首先使用心电图片段数据对网络中的参数进行训练,然后将正常状态下和各类故障状态下的滚动轴承曲线作为网络输入训练网络最后3个全连接层,最后得到整个训练网络。通过数据验证,证明所采用的方法与传统的故障诊断方法相比,能更加智能识别各类故障类别,并且拥有更高的正确率和良好的泛化能力。  相似文献   

18.
针对传统的车牌识别算法对于复杂环境车牌定位效果不理想、车牌识别准确率低、实时性差等问题,提出了一种基于深度学习的车牌智能识别方法。首先使用Yolov3网络对图片中的车牌进行定位,然后采用空间变换网络对倾斜的车牌进行校正,并将校正后的车牌送入设计的改进卷积神经网络中提取车牌序列特征,最后通过双向递归神经网络和时序分类网络识别出车牌字符。与传统车牌识别方法相比,提出的方法能够有效克服天气等不良状况的影响,从Yolov3定位到识别完成的平均时间可以缩短至33 ms左右,平均识别准确率能够达到96.1%。  相似文献   

19.
针对滚动轴承早期内圈故障特征较为微弱,并伴随环境噪声的干扰,微弱的故障特征信息易被环境噪声所淹没的问题,课题组提出基于最小熵解卷积(MED)和加权多尺度字典学习(WMSDL)的滚动轴承早期故障诊断方法。课题组通过设置一个滤波器使故障特征信号峭度最大实现解卷积,利用WMSDL对解卷积后的信号稀疏分解后进行平方包络解调突出内圈故障特征频率。仿真分析和实例分析结果表明:解卷积后信号的信噪比明显提高,内圈冲击成分明显增强。课题组的研究可有效提取滚动轴承故障特征频率。  相似文献   

20.
为了对砂轮寿命周期磨削性能进行特征提取与智能识别,课题组提出了一种改进的变分模态分解算法与Kriging模型相结合的砂轮寿命周期磨削性能识别方法AVMD Kriging。首先,通过人工鱼群算法和包络熵适应度函数来优化VMD,以解决VMD中本征模态函数分解个数k和惩罚因子α难以自适应确定的问题;再利用皮尔逊相关系数选取与原始信号相关性最高的本征模态函数并计算其样本熵值组成特征向量,将其输入Kriging模型进行砂轮寿命周期磨削性能识别;最后利用实验采集的声发射数据,将提出的AVMD Kriging方法与传统的KNN模型、Tree模型进行对比。结果表明:AVMD Kriging方法的识别准确率优于KNN模型和Tree模型,能有效提高砂轮寿命周期磨削性能的识别准确率,同时具有较好的泛化能力和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号