首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a Bayesian approach to test linear autoregressive moving-average (ARMA) models against threshold autoregressive moving-average (TARMA) models. First, the marginal posterior densities of all parameters, including the threshold and delay, of a TARMA model are obtained by using Gibbs sampler with Metropolis–Hastings algorithm. Second, reversible-jump Markov chain Monte Carlo (RJMCMC) method is adopted to calculate the posterior probabilities for ARMA and TARMA models: Posterior evidence in favor of TARMA models indicates threshold nonlinearity. Finally, based on RJMCMC scheme and Akaike information criterion (AIC) or Bayesian information criterion (BIC), the procedure for modeling TARMA models is exploited. Simulation experiments and a real data example show that our method works well for distinguishing an ARMA from a TARMA model and for building TARMA models.  相似文献   

2.
The main aim of this paper is to perform sensitivity analysis to the specification of prior distributions in a Bayesian analysis setting of STAR models. To achieve this aim, the joint posterior distribution of model order, coefficient, and implicit parameters in the logistic STAR model is first being presented. The conditional posterior distributions are then shown, followed by the design of a posterior simulator using a combination of Metropolis-Hastings, Gibbs Sampler, RJMCMC, and Multiple Try Metropolis algorithms, respectively. Following this, simulation studies and a case study on the prior sensitivity for the implicit parameters are being detailed at the end.  相似文献   

3.
We formulate a prior distribution for the energy function of stationary binary Markov random fields (MRFs) defined on a rectangular lattice. In the prior we assign distributions to all parts of the energy function. In particular we define priors for the neighbourhood structure of the MRF, what interactions to include in the model, and for potential values. We define a reversible jump Markov chain Monte Carlo (RJMCMC) procedure to simulate from the corresponding posterior distribution when conditioned to an observed scene. Thereby we are able to learn both the neighbourhood structure and the parametric form of the MRF from the observed scene. We circumvent evaluations of the intractable normalising constant of the MRF when running the RJMCMC algorithm by adopting a previously defined approximate auxiliary variable algorithm. We demonstrate the usefulness of our prior in two simulation examples and one real data example.  相似文献   

4.
A new Bayesian state and parameter learning algorithm for multiple target tracking models with image observations are proposed. Specifically, a Markov chain Monte Carlo algorithm is designed to sample from the posterior distribution of the unknown time-varying number of targets, their birth, death times and states as well as the model parameters, which constitutes the complete solution to the specific tracking problem we consider. The conventional approach is to pre-process the images to extract point observations and then perform tracking, i.e. infer the target trajectories. We model the image generation process directly to avoid any potential loss of information when extracting point observations using a pre-processing step that is decoupled from the inference algorithm. Numerical examples show that our algorithm has improved tracking performance over commonly used techniques, for both synthetic examples and real florescent microscopy data, especially in the case of dim targets with overlapping illuminated regions.  相似文献   

5.
In this paper, we consider the problem of estimating a single changepoint in a parameter‐driven model. The model – an extension of the Poisson regression model – accounts for serial correlation through a latent process incorporated in its mean function. Emphasis is placed on the changepoint characterization with changes in the parameters of the model. The model is fully implemented within the Bayesian framework. We develop a RJMCMC algorithm for parameter estimation and model determination. The algorithm embeds well‐devised Metropolis–Hastings procedures for estimating the missing values of the latent process through data augmentation and the changepoint. The methodology is illustrated using data on monthly counts of claimants collecting wage loss benefit for injuries in the workplace and an analysis of presidential uses of force in the USA.  相似文献   

6.
Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms can be efficiently applied in Bayesian inference for hidden Markov models (HMMs), when the number of latent regimes is unknown. As for finite mixture models, when priors are invariant to the relabelling of the regimes, HMMs are unidentifiable in data fitting, because multiple ways to label the regimes can alternate during the MCMC iterations; this is the so-called label switching problem. HMMs with an unknown number of regimes are considered here and the goal of this paper is the comparison, both applied and theoretical, of five methods used for tackling label switching within a RJMCMC algorithm; they are: post-processing, partial reordering, permutation sampling, sampling from a Markov prior and rejection sampling. The five strategies we compare have been proposed mostly in the literature of finite mixture models and only two of them, i.e. rejection sampling and partial reordering, have been presented in RJMCMC algorithms for HMMs. We consider RJMCMC algorithms in which the parameters are updated by Gibbs sampling and the dimension of the model changes in split-and-merge and birth-and-death moves. Finally, an example illustrates and compares the five different methodologies.  相似文献   

7.
Summary. A Bayesian method for segmenting weed and crop textures is described and implemented. The work forms part of a project to identify weeds and crops in images so that selective crop spraying can be carried out. An image is subdivided into blocks and each block is modelled as a single texture. The number of different textures in the image is assumed unknown. A hierarchical Bayesian procedure is used where the texture labels have a Potts model (colour Ising Markov random field) prior and the pixels within a block are distributed according to a Gaussian Markov random field, with the parameters dependent on the type of texture. We simulate from the posterior distribution by using a reversible jump Metropolis–Hastings algorithm, where the number of different texture components is allowed to vary. The methodology is applied to a simulated image and then we carry out texture segmentation on the weed and crop images that motivated the work.  相似文献   

8.
In this paper, we describe a new statistical method for images which contain discontinuities. The method tries to improve the quality of a 'measured' image, which is degraded by the presence of random distortions. This is achieved by using knowledge about the degradation process and a priori information about the main characteristics of the underlying ideal image. Specifically, the method uses information about the discontinuity patterns in small areas of the 'true' image. Some auxiliary labels 'explicitly' describe the location of discontinuities in the true image. A Bayesian model for the image grey levels and the discontinuity labels is built. The maximum a posteriori estimator is considered. The iterated conditional modes algorithm is used to find a (local) maximum of the posterior distribution. The proposed method has been successfully applied to both artificial and real magnetic resonance images. A comparison of the results with those obtained from three other known methods also has been performed. Finally, the connection between Bayesian 'explicity and 'implicit' models is studied. In implicit modelling, there is no use of any set of labels explicitly describing the location of discontinuities. For these models, we derive some constraints of the function by which the presence of the discontinuities is taken into account.  相似文献   

9.
We propose a class of Bayesian semiparametric mixed-effects models; its distinctive feature is the randomness of the grouping of observations, which can be inferred from the data. The model can be viewed under a more natural perspective, as a Bayesian semiparametric regression model on the log-scale; hence, in the original scale, the error is a mixture of Weibull densities mixed on both parameters by a normalized generalized gamma random measure, encompassing the Dirichlet process. As an estimate of the posterior distribution of the clustering of the random-effects parameters, we consider the partition minimizing the posterior expectation of a suitable class of loss functions. As a merely illustrative application of our model we consider a Kevlar fibre lifetime dataset (with censoring). We implement an MCMC scheme, obtaining posterior credibility intervals for the predictive distributions and for the quantiles of the failure times under different stress levels. Compared to a previous parametric Bayesian analysis, we obtain narrower credibility intervals and a better fit to the data. We found that there are three main clusters among the random-effects parameters, in accordance with previous frequentist analysis.  相似文献   

10.
Genetic algorithms (GAs) are adaptive search techniques designed to find near-optimal solutions of large scale optimization problems with multiple local maxima. Standard versions of the GA are defined for objective functions which depend on a vector of binary variables. The problem of finding the maximum a posteriori (MAP) estimate of a binary image in Bayesian image analysis appears to be well suited to a GA as images have a natural binary representation and the posterior image probability is a multi-modal objective function. We use the numerical optimization problem posed in MAP image estimation as a test-bed on which to compare GAs with simulated annealing (SA), another all-purpose global optimization method. Our conclusions are that the GAs we have applied perform poorly, even after adaptation to this problem. This is somewhat unexpected, given the widespread claims of GAs' effectiveness, but it is in keeping with work by Jennison and Sheehan (1995) which suggests that GAs are not adept at handling problems involving a great many variables of roughly equal influence.We reach more positive conclusions concerning the use of the GA's crossover operation in recombining near-optimal solutions obtained by other methods. We propose a hybrid algorithm in which crossover is used to combine subsections of image reconstructions obtained using SA and we show that this algorithm is more effective and efficient than SA or a GA individually.  相似文献   

11.
ABSTRACT

In this paper, we consider an effective Bayesian inference for censored Student-t linear regression model, which is a robust alternative to the usual censored Normal linear regression model. Based on the mixture representation of the Student-t distribution, we propose a non-iterative Bayesian sampling procedure to obtain independently and identically distributed samples approximately from the observed posterior distributions, which is different from the iterative Markov Chain Monte Carlo algorithm. We conduct model selection and influential analysis using the posterior samples to choose the best fitted model and to detect latent outliers. We illustrate the performance of the procedure through simulation studies, and finally, we apply the procedure to two real data sets, one is the insulation life data with right censoring and the other is the wage rates data with left censoring, and we get some interesting results.  相似文献   

12.
The B-spline representation is a common tool to improve the fitting of smooth nonlinear functions, it offers a fitting as a piecewise polynomial. The regions that define the pieces are separated by a sequence of knots. The main difficulty in this type of modeling is the choice of the number and the locations of these knots. The Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm provides a solution to simultaneously select these two parameters by considering the knots as free parameters. This algorithm belongs to the MCMC techniques that allow simulations from target distributions on spaces of varying dimension. The aim of the present investigation is to use this algorithm in the framework of the analysis of survival time, for the Cox model in particular. In fact, the relation between the hazard ratio function and the covariates being assumed to be log-linear, this assumption is too restrictive. Thus, we propose to use the RJMCMC algorithm to model the log hazard ratio function by a B-spline representation with an unknown number of knots at unknown locations. This method is illustrated with two real data sets: the Stanford heart transplant data and lung cancer survival data. Another application of the RJMCMC is selecting the significant covariates, and a simulation study is performed.  相似文献   

13.
Quantile regression, including median regression, as a more completed statistical model than mean regression, is now well known with its wide spread applications. Bayesian inference on quantile regression or Bayesian quantile regression has attracted much interest recently. Most of the existing researches in Bayesian quantile regression focus on parametric quantile regression, though there are discussions on different ways of modeling the model error by a parametric distribution named asymmetric Laplace distribution or by a nonparametric alternative named scale mixture asymmetric Laplace distribution. This paper discusses Bayesian inference for nonparametric quantile regression. This general approach fits quantile regression curves using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through reversible jump Markov chain Monte Carlo (RJMCMC) of Green (Biometrika 82:711–732, 1995). Instead of drawing samples from the posterior, we use regression quantiles to create Markov chains for the estimation of the quantile curves. We also use approximate Bayesian factor in the inference. This method extends the work in automatic Bayesian mean curve fitting to quantile regression. Numerical results show that this Bayesian quantile smoothing technique is competitive with quantile regression/smoothing splines of He and Ng (Comput. Stat. 14:315–337, 1999) and P-splines (penalized splines) of Eilers and de Menezes (Bioinformatics 21(7):1146–1153, 2005).  相似文献   

14.
A method for the Bayesian restoration of noisy binary images portraying an object with constant grey level on a background is presented. The restoration, performed by fitting a polygon with any number of sides to the object's outline, is driven by a new probabilistic model for the generation of polygons in a compact subset of R2 , which is used as a prior distribution for the polygon. Some measurability issues raised by the correct specification of the model are addressed. The simulation from the prior and the calculation of the a posteriori mean of grey levels are carried out through reversible jump Markov chain Monte Carlo computation, whose implementation and convergence properties are also discussed. One example of restoration of a synthetic image is presented and compared with existing pixel-based methods.  相似文献   

15.
In this article, we employ the variational Bayesian method to study the parameter estimation problems of linear regression model, wherein some regressors are of Gaussian distribution with nonzero prior means. We obtain an analytical expression of the posterior parameter distribution, and then propose an iterative algorithm for the model. Simulations are carried out to test the performance of the proposed algorithm, and the simulation results confirm both the effectiveness and the reliability of the proposed algorithm.  相似文献   

16.
17.
This paper addresses the image modeling problem under the assumption that images can be represented by third-order, hidden Markov mesh random field models. The range of applications of the techniques described hereafter comprises the restoration of binary images, the modeling and compression of image data, as well as the segmentation of gray-level or multi-spectral images, and image sequences under the short-range motion hypothesis. We outline coherent approaches to both the problems of image modeling (pixel labeling) and estimation of model parameters (learning). We derive a real-time labeling algorithm-based on a maximum, marginal a posteriori probability criterion-for a hidden third-order Markov mesh random field model. Our algorithm achieves minimum time and space complexities simultaneously, and we describe what we believe to be the most appropriate data structures to implement it. Critical aspects of the computer simulation of a real-time implementation are discussed, down to the computer code level. We develop an (unsupervised) learning technique by which the model parameters can be estimated without ground truth information. We lay bare the conditions under which our approach can be made time-adaptive in order to be able to cope with short-range motion in dynamic image sequences. We present extensive experimental results for both static and dynamic images from a wide variety of sources. They comprise standard, infra-red and aerial images, as well as a sequence of ultrasound images of a fetus and a series of frames from a motion picture sequence. These experiments demonstrate that the method is subjectively relevant to the problems of image restoration, segmentation and modeling.  相似文献   

18.
We discuss posterior sampling for two distinct multivariate generalisations of the univariate autoregressive integrated moving average (ARIMA) model with fractional integration. The existing approach to Bayesian estimation, introduced by Ravishanker & Ray, claims to provide a posterior‐sampling algorithm for fractionally integrated vector autoregressive moving averages (FIVARMAs). We show that this algorithm produces posterior draws for vector autoregressive fractionally integrated moving averages (VARFIMAs), a model of independent interest that has not previously received attention in the Bayesian literature.  相似文献   

19.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

20.
We propose a fully Bayesian model with a non-informative prior for analyzing misclassified binary data with a validation substudy. In addition, we derive a closed-form algorithm for drawing all parameters from the posterior distribution and making statistical inference on odds ratios. Our algorithm draws each parameter from a beta distribution, avoids the specification of initial values, and does not have convergence issues. We apply the algorithm to a data set and compare the results with those obtained by other methods. Finally, the performance of our algorithm is assessed using simulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号