共查询到20条相似文献,搜索用时 0 毫秒
1.
Multivariate data with a sequential or temporal structure occur in various fields of study. The hidden Markov model (HMM) provides an attractive framework for modeling long-term persistence in areas of pattern recognition through the extension of independent and identically distributed mixture models. Unlike in typical mixture models, the heterogeneity of data is represented by hidden Markov states. This article extends the HMM to a multi-site or multivariate case by taking a hierarchical Bayesian approach. This extension has many advantages over a single-site HMM. For example, it can provide more information for identifying the structure of the HMM than a single-site analysis. We evaluate the proposed approach by exploiting a spatial correlation that depends on the distance between sites. 相似文献
2.
Qie Li 《统计学通讯:理论与方法》2013,42(23):5071-5090
We propose a Bayesian hierarchical model for multiple comparisons in mixed models where the repeated measures on subjects are described with the subject random effects. The model facilitates inferences in parameterizing the successive differences of the population means, and for them, we choose independent prior distributions that are mixtures of a normal distribution and a discrete distribution with its entire mass at zero. For the other parameters, we choose conjugate or vague priors. The performance of the proposed hierarchical model is investigated in the simulated and two real data sets, and the results illustrate that the proposed hierarchical model can effectively conduct a global test and pairwise comparisons using the posterior probability that any two means are equal. A simulation study is performed to analyze the type I error rate, the familywise error rate, and the test power. The Gibbs sampler procedure is used to estimate the parameters and to calculate the posterior probabilities. 相似文献
3.
Martin Crowder 《Scandinavian Journal of Statistics》1998,25(1):53-67
A parametric multivariate failure time distribution is derived from a frailty-type model with a particular frailty distribution. It covers as special cases certain distributions which have been used for multivariate survival data in recent years. Some properties of the distribution are derived: its marginal and conditional distributions lie within the parametric family, and association between the component variates can be positive or, to a limited extent, negative. The simple closed form of the survivor function is useful for right-censored data, as occur commonly in survival analysis, and for calculating uniform residuals. Also featured is the distribution of ratios of paired failure times. The model is applied to data from the literature 相似文献
4.
In event history analysis, the problem of modeling two interdependent processes is still not completely solved. In a frequentist
framework, there are two most general approaches: the causal approach and the system approach. The recent growing interest in Bayesian statistics suggests some interesting works on survival models and event history
analysis in a Bayesian perspective. In this work we present a possible solution for the analysis of dynamic interdependence
by a Bayesian perspective in a graphical duration model framework, using marked point processes. Main results from the Bayesian
approach and the comparison with the frequentist one are illustrated on a real example: the analysis of the dynamic relationship
between fertility and female employment. 相似文献
5.
6.
IDA SCHEEL PETER J. GREEN JONATHAN C. ROUGIER 《Scandinavian Journal of Statistics》2011,38(3):529-550
Abstract. Real‐world phenomena are frequently modelled by Bayesian hierarchical models. The building‐blocks in such models are the distribution of each variable conditional on parent and/or neighbour variables in the graph. The specifications of centre and spread of these conditional distributions may be well motivated, whereas the tail specifications are often left to convenience. However, the posterior distribution of a parameter may depend strongly on such arbitrary tail specifications. This is not easily detected in complex models. In this article, we propose a graphical diagnostic, the Local critique plot, which detects such influential statistical modelling choices at the node level. It identifies the properties of the information coming from the parents and neighbours (the local prior) and from the children and co‐parents (the lifted likelihood) that are influential on the posterior distribution, and examines local conflict between these distinct information sources. The Local critique plot can be derived for all parameters in a chain graph model. 相似文献
7.
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real data set. 相似文献
8.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer. 相似文献
9.
A. N. Pettitt T. T. Tran M. A. Haynes J. L. Hay 《Journal of the Royal Statistical Society. Series A, (Statistics in Society)》2006,169(1):97-114
Summary. The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia. 相似文献
10.
Steele F 《Lifetime data analysis》2003,9(2):155-174
Event history models typically assume that the entire population is at risk of experiencing the event of interest throughout the observation period. However, there will often be individuals, referred to as long-term survivors, who may be considered a priori to have a zero hazard throughout the study period. In this paper, a discrete-time mixture model is proposed in which the probability of long-term survivorship and the timing of event occurrence are modelled jointly. Another feature of event history data that often needs to be considered is that they may come from a population with a hierarchical structure. For example, individuals may be nested within geographical regions and individuals in the same region may have similar risks of experiencing the event of interest due to unobserved regional characteristics. Thus, the discrete-time mixture model is extended to allow for clustering in the likelihood and timing of an event within regions. The model is further extended to allow for unobserved individual heterogeneity in the hazard of event occurrence. The proposed model is applied in an analysis of contraceptive sterilization in Bangladesh. The results show that a woman's religion and education level affect her probability of choosing sterilization, but not when she gets sterilized. There is also evidence of community-level variation in sterilization timing, but not in the probability of sterilization. 相似文献
11.
In this paper, a new hybrid model of vector autoregressive moving average (VARMA) models and Bayesian networks is proposed to improve the forecasting performance of multivariate time series. In the proposed model, the VARMA model, which is a popular linear model in time series forecasting, is specified to capture the linear characteristics. Then the errors of the VARMA model are clustered into some trends by K-means algorithm with Krzanowski–Lai cluster validity index determining the number of trends, and a Bayesian network is built to learn the relationship between the data and the trend of its corresponding VARMA error. Finally, the estimated values of the VARMA model are compensated by the probabilities of their corresponding VARMA errors belonging to each trend, which are obtained from the Bayesian network. Compared with VARMA models, the experimental results with a simulation study and two multivariate real-world data sets indicate that the proposed model can effectively improve the prediction performance. 相似文献
12.
João Nicolau 《Scandinavian Journal of Statistics》2014,41(4):1124-1135
We propose a new model for multivariate Markov chains of order one or higher on the basis of the mixture transition distribution (MTD) model. We call it the MTD‐Probit. The proposed model presents two attractive features: it is completely free of constraints, thereby facilitating the estimation procedure, and it is more precise at estimating the transition probabilities of a multivariate or higher‐order Markov chain than the standard MTD model. 相似文献
13.
Abstract. O'Hagan ( Highly Structured Stochastic Systems , Oxford University Press, Oxford, 2003) introduces some tools for criticism of Bayesian hierarchical models that can be applied at each node of the model, with a view to diagnosing problems of model fit at any point in the model structure. His method relies on computing the posterior median of a conflict index, typically through Markov chain Monte Carlo simulations. We investigate a Gaussian model of one-way analysis of variance, and show that O'Hagan's approach gives unreliable false warning probabilities. We extend and refine the method, especially avoiding double use of data by a data-splitting approach, accompanied by theoretical justifications from a non-trivial special case. Through extensive numerical experiments we show that our method detects model mis-specification about as well as the method of O'Hagan, while retaining the desired false warning probability for data generated from the assumed model. This also holds for Student's- t and uniform distribution versions of the model. 相似文献
14.
传统的分层模型假设组与组之间独立,没有考虑组之间的相关性。而以地理单元分组的数据往往具有空间依赖性,个体不仅受本地区的影响,也可能受相邻地区的影响。此时,传统分层模型层-2残差分布的假设不再成立。为了处理空间分层数据,将空间统计和空间计量经济模型的思想引入到分层模型中,既纳入分层的思想,又顾及空间相关性,提出了空间分层线性模型,并给出了其固定效应、方差协方差成分和空间回归参数的最大似然估计,在运用EM算法时,结合运用了Fisher得分算法。 相似文献
15.
A Bayesian test for the point null testing problem in the multivariate case is developed. A procedure to get the mixed distribution using the prior density is suggested. For comparisons between the Bayesian and classical approaches, lower bounds on posterior probabilities of the null hypothesis, over some reasonable classes of prior distributions, are computed and compared with the p-value of the classical test. With our procedure, a better approximation is obtained because the p-value is in the range of the Bayesian measures of evidence. 相似文献
16.
Multi-stage time evolving models are common statistical models for biological systems, especially insect populations. In stage-duration distribution models, parameter estimation for the models use the Laplace transform method. This method involves assumptions such as known constant shapes, known constant rates or the same overall hazard rate for all stages. These assumptions are strong and restrictive. The main aim of this paper is to weaken these assumptions by using a Bayesian approach. In particular, a Metropolis-Hastings algorithm based on deterministic transformations is used to estimate parameters. We will use two models, one which has no hazard rates, and the other has stage-wise constant hazard rates. These methods are validated in simulation studies followed by a case study of cattle parasites. The results show that the proposed methods are able to estimate the parameters comparably well, as opposed to using the Laplace transform methods. 相似文献
17.
18.
In some fields, we are forced to work with missing data in multivariate time series. Unfortunately, the data analysis in this context cannot be carried out in the same way as in the case of complete data. To deal with this problem, a Bayesian analysis of multivariate threshold autoregressive models with exogenous inputs and missing data is carried out. In this paper, Markov chain Monte Carlo methods are used to obtain samples from the involved posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method in this class of multivariate process. The number of regimes is estimated using marginal likelihood or product parameter-space strategies. 相似文献
19.
Many study designs yield a variety of outcomes from each subject clustered within an experimental unit. When these outcomes are of mixed data types, it is challenging to jointly model the effects of covariates on the responses using traditional methods. In this paper, we develop a Bayesian approach for a joint regression model of the different outcome variables and show that the fully conditional posterior distributions obtained under the model assumptions allow for estimation of posterior distributions using Gibbs sampling algorithm. 相似文献
20.
We develop diagnostic tests for random-effects multi-spell multi-state models focusing on: independence between the unobserved heterogeneity and observed covariates; mutual independence of heterogeneity terms; and distributional form. They are applied to a transition model of the British youth labor market, revealing significant misspecifications in our initial model, and allowing us to develop a considerably better-fitting specification that would have been difficult to reach by other means. The improved specification implies reduced estimates of the effectiveness of the youth training scheme (YTS), but we nevertheless retain the conclusion of significant positive effects of YTS on employment prospects. 相似文献