首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In drug development, after completion of phase II proof‐of‐concept trials, the sponsor needs to make a go/no‐go decision to start expensive phase III trials. The probability of statistical success (PoSS) of the phase III trials based on data from earlier studies is an important factor in that decision‐making process. Instead of statistical power, the predictive power of a phase III trial, which takes into account the uncertainty in the estimation of treatment effect from earlier studies, has been proposed to evaluate the PoSS of a single trial. However, regulatory authorities generally require statistical significance in two (or more) trials for marketing licensure. We show that the predictive statistics of two future trials are statistically correlated through use of the common observed data from earlier studies. Thus, the joint predictive power should not be evaluated as a simplistic product of the predictive powers of the individual trials. We develop the relevant formulae for the appropriate evaluation of the joint predictive power and provide numerical examples. Our methodology is further extended to the more complex phase III development scenario comprising more than two (K > 2) trials, that is, the evaluation of the PoSS of at least k0 () trials from a program of K total trials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

3.
Phase II trials evaluate whether a new drug or a new therapy is worth further pursuing or certain treatments are feasible or not. A typical phase II is a single arm (open label) trial with a binary clinical endpoint (response to therapy). Although many oncology Phase II clinical trials are designed with a two-stage procedure, multi-stage design for phase II cancer clinical trials are now feasible due to increased capability of data capture. Such design adjusts for multiple analyses and variations in analysis time, and provides greater flexibility such as minimizing the number of patients treated on an ineffective therapy and identifying the minimum number of patients needed to evaluate whether the trial would warrant further development. In most of the NIH sponsored studies, the early stopping rule is determined so that the number of patients treated on an ineffective therapy is minimized. In pharmaceutical trials, it is also of importance to know as early as possible if the trial is highly promising and what is the likelihood the early conclusion can sustain. Although various methods are available to address these issues, practitioners often use disparate methods for addressing different issues and do not realize a single unified method exists. This article shows how to utilize a unified approach via a fully sequential procedure, the sequential conditional probability ratio test, to address the multiple needs of a phase II trial. We show the fully sequential program can be used to derive an optimized efficient multi-stage design for either a low activity or a high activity, to identify the minimum number of patients required to assess whether a new drug warrants further study and to adjust for unplanned interim analyses. In addition, we calculate a probability of discordance that the statistical test will conclude otherwise should the trial continue to the planned end that is usually at the sample size of a fixed sample design. This probability can be used to aid in decision making in a drug development program. All computations are based on exact binomial distribution.  相似文献   

4.
Owing to increased costs and competition pressure, drug development becomes more and more challenging. Therefore, there is a strong need for improving efficiency of clinical research by developing and applying methods for quantitative decision making. In this context, the integrated planning for phase II/III programs plays an important role as numerous quantities can be varied that are crucial for cost, benefit, and program success. Recently, a utility‐based framework has been proposed for an optimal planning of phase II/III programs that puts the choice of decision boundaries and phase II sample sizes on a quantitative basis. However, this method is restricted to studies with a single time‐to‐event endpoint. We generalize this procedure to the setting of clinical trials with multiple endpoints and (asymptotically) normally distributed test statistics. Optimal phase II sample sizes and go/no‐go decision rules are provided for both the “all‐or‐none” and “at‐least‐one” win criteria. Application of the proposed method is illustrated by drug development programs in the fields of Alzheimer disease and oncology.  相似文献   

5.
Evidence‐based quantitative methodologies have been proposed to inform decision‐making in drug development, such as metrics to make go/no‐go decisions or predictions of success, identified with statistical significance of future clinical trials. While these methodologies appropriately address some critical questions on the potential of a drug, they either consider the past evidence without predicting the outcome of the future trials or focus only on efficacy, failing to account for the multifaceted aspects of a successful drug development. As quantitative benefit‐risk assessments could enhance decision‐making, we propose a more comprehensive approach using a composite definition of success based not only on the statistical significance of the treatment effect on the primary endpoint but also on its clinical relevance and on a favorable benefit‐risk balance in the next pivotal studies. For one drug, we can thus study several development strategies before starting the pivotal trials by comparing their predictive probability of success. The predictions are based on the available evidence from the previous trials, to which new hypotheses on the future development could be added. The resulting predictive probability of composite success provides a useful summary to support the discussions of the decision‐makers. We present a fictive, but realistic, example in major depressive disorder inspired by a real decision‐making case.  相似文献   

6.

Bayesian monitoring strategies based on predictive probabilities are widely used in phase II clinical trials that involve a single efficacy binary variable. The essential idea is to control the predictive probability that the trial will show a conclusive result at the scheduled end of the study, given the information at the interim stage and the prior beliefs. In this paper, we present an extension of this approach to incorporate toxicity considerations in single-arm phase II trials. We consider two binary endpoints representing response and toxicity of the experimental treatment and define the result as successful at the conclusion of the study if the posterior probability of an high efficacy and that of a small toxicity are both sufficiently large. At any interim look, the Multinomial-Dirichlet distribution provides the predictive probability of each possible combination of future efficacy and toxicity outcomes. It is exploited to obtain the predictive probability that the trial will yield a positive outcome, if it continues to the planned end. Different possible interim situations are considered to investigate the behaviour of the proposed predictive rules and the differences with the monitoring strategies based on posterior probabilities are highlighted. Simulation studies are also performed to evaluate the frequentist operating characteristics of the proposed design and to calibrate the design parameters.

  相似文献   

7.
8.
Although the statistical methods enabling efficient adaptive seamless designs are increasingly well established, it is important to continue to use the endpoints and specifications that best suit the therapy area and stage of development concerned when conducting such a trial. Approaches exist that allow adaptive designs to continue seamlessly either in a subpopulation of patients or in the whole population on the basis of data obtained from the first stage of a phase II/III design: our proposed design adds extra flexibility by also allowing the trial to continue in all patients but with both the subgroup and the full population as co-primary populations. Further, methodology is presented which controls the Type-I error rate at less than 2.5% when the phase II and III endpoints are different but correlated time-to-event endpoints. The operating characteristics of the design are described along with a discussion of the practical aspects in an oncology setting.  相似文献   

9.
The aim of a phase II clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase II trial, although we assume that subsequent phase III clinical trials will have standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi‐drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright © 2005 John Wiley & Sons, Ltd  相似文献   

10.
For binary endpoints, the required sample size depends not only on the known values of significance level, power and clinically relevant difference but also on the overall event rate. However, the overall event rate may vary considerably between studies and, as a consequence, the assumptions made in the planning phase on this nuisance parameter are to a great extent uncertain. The internal pilot study design is an appealing strategy to deal with this problem. Here, the overall event probability is estimated during the ongoing trial based on the pooled data of both treatment groups and, if necessary, the sample size is adjusted accordingly. From a regulatory viewpoint, besides preserving blindness it is required that eventual consequences for the Type I error rate should be explained. We present analytical computations of the actual Type I error rate for the internal pilot study design with binary endpoints and compare them with the actual level of the chi‐square test for the fixed sample size design. A method is given that permits control of the specified significance level for the chi‐square test under blinded sample size recalculation. Furthermore, the properties of the procedure with respect to power and expected sample size are assessed. Throughout the paper, both the situation of equal sample size per group and unequal allocation ratio are considered. The method is illustrated with application to a clinical trial in depression. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   

11.
The problem of comparing several experimental treatments to a standard arises frequently in medical research. Various multi-stage randomized phase II/III designs have been proposed that select one or more promising experimental treatments and compare them to the standard while controlling overall Type I and Type II error rates. This paper addresses phase II/III settings where the joint goals are to increase the average time to treatment failure and control the probability of toxicity while accounting for patient heterogeneity. We are motivated by the desire to construct a feasible design for a trial of four chemotherapy combinations for treating a family of rare pediatric brain tumors. We present a hybrid two-stage design based on two-dimensional treatment effect parameters. A targeted parameter set is constructed from elicited parameter pairs considered to be equally desirable. Bayesian regression models for failure time and the probability of toxicity as functions of treatment and prognostic covariates are used to define two-dimensional covariate-adjusted treatment effect parameter sets. Decisions at each stage of the trial are based on the ratio of posterior probabilities of the alternative and null covariate-adjusted parameter sets. Design parameters are chosen to minimize expected sample size subject to frequentist error constraints. The design is illustrated by application to the brain tumor trial.  相似文献   

12.
Abstract

In this paper, we propose a Bayesian two-stage design with changing hypothesis test by bridging a single-arm study and a double-arm randomized trial in one phase II clinical trial based on continuous endpoints rather than binary endpoints. We have also calibrated with respect to frequentist and Bayesian error rates. The proposed design minimizes the Bayesian expected sample size if the new candidate has low or high efficacy activity subject to the constraint upon error rates in both frequentist and Bayesian perspectives. Tables of designs for various combinations of design parameters are also provided.  相似文献   

13.
When phase I clinical trials were found to be unable to precisely estimate the frequency of toxicity, Brayan and Day proposed incorporating toxicity considerations into two-stage designs in phase II clinical trials. Conaway and Petroni further pointed out that it is important to evaluate the clinical activity and safety simultaneously in studying cancer treatments with more toxic chemotherapies in a phase II clinical trial. Therefore, they developed multi-stage designs with two dependent binary endpoints. However, the usual sample sizes in phase II trials make these designs difficult to control the type I error rate at a desired level over the entire null region and still have sufficient power against reasonable alternatives. Therefore, the curtailed sampling procedure summarized by Phatak and Bhatt will be applied to the two-stage designs with two dependent binary endpoints in this paper to reduce sample sizes and speed up the development process for drugs.  相似文献   

14.
Randomised controlled trials are considered the gold standard in trial design. However, phase II oncology trials with a binary outcome are often single-arm. Although a number of reasons exist for choosing a single-arm trial, the primary reason is that single-arm designs require fewer participants than their randomised equivalents. Therefore, the development of novel methodology that makes randomised designs more efficient is of value to the trials community. This article introduces a randomised two-arm binary outcome trial design that includes stochastic curtailment (SC), allowing for the possibility of stopping a trial before the final conclusions are known with certainty. In addition to SC, the proposed design involves the use of a randomised block design, which allows investigators to control the number of interim analyses. This approach is compared with existing designs that also use early stopping, through the use of a loss function comprised of a weighted sum of design characteristics. Comparisons are also made using an example from a real trial. The comparisons show that for many possible loss functions, the proposed design is superior to existing designs. Further, the proposed design may be more practical, by allowing a flexible number of interim analyses. One existing design produces superior design realisations when the anticipated response rate is low. However, when using this design, the probability of rejecting the null hypothesis is sensitive to misspecification of the null response rate. Therefore, when considering randomised designs in phase II, we recommend the proposed approach be preferred over other sequential designs.  相似文献   

15.
Instead of using traditional separate phase I and II trials, in this article, we propose using a parallel three-stage phase I/II design, incorporating a dose expansion approach to flexibly evaluate the safety and efficacy of dose levels, and to select the optimal dose. In the proposed design, both the toxicity and efficacy responses are binary endpoints. A 3+3-based procedure is used for initial period of dose escalation at stage 1; at this level, the dose can be expanded to stage 2 for exploratory efficacy studies of phase IIa, while simultaneously, the safety testing can advance to a higher dose level. A beta-binomial model is used to model the efficacy responses. There are two placebo-controlled randomization interim monitoring analyses at stage 2 to select the promising doses to be recommended to stage 3 for further efficacy studies of phase IIb. An adaptive randomization approach is used to assign more patients to doses with higher efficacy levels at stage 3. We examine the properties of the proposed design through extensive simulation studies by using R programming language, and also compare the new design with the conventional design and a competing adaptive Bayesian design. The simulation results show that our design can efficiently assign more patients to doses with higher efficacy levels and is superior to the two competing designs in terms of total sample size reduction.  相似文献   

16.
This paper illustrates an approach to setting the decision framework for a study in early clinical drug development. It shows how the criteria for a go and a stop decision are calculated based on pre‐specified target and lower reference values. The framework can lead to a three‐outcome approach by including a consider zone; this could enable smaller studies to be performed in early development, with other information either external to or within the study used to reach a go or stop decision. In this way, Phase I/II trials can be geared towards providing actionable decision‐making rather than the traditional focus on statistical significance. The example provided illustrates how the decision criteria were calculated for a Phase II study, including an interim analysis, and how the operating characteristics were assessed to ensure the decision criteria were robust. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In parallel group trials, long‐term efficacy endpoints may be affected if some patients switch or cross over to the alternative treatment arm prior to the event. In oncology trials, switch to the experimental treatment can occur in the control arm following disease progression and potentially impact overall survival. It may be a clinically relevant question to estimate the efficacy that would have been observed if no patients had switched, for example, to estimate ‘real‐life’ clinical effectiveness for a health technology assessment. Several commonly used statistical methods are available that try to adjust time‐to‐event data to account for treatment switching, ranging from naive exclusion and censoring approaches to more complex inverse probability of censoring weighting and rank‐preserving structural failure time models. These are described, along with their key assumptions, strengths, and limitations. Best practice guidance is provided for both trial design and analysis when switching is anticipated. Available statistical software is summarized, and examples are provided of the application of these methods in health technology assessments of oncology trials. Key considerations include having a clearly articulated rationale and research question and a well‐designed trial with sufficient good quality data collection to enable robust statistical analysis. No analysis method is universally suitable in all situations, and each makes strong untestable assumptions. There is a need for further research into new or improved techniques. This information should aid statisticians and their colleagues to improve the design and analysis of clinical trials where treatment switch is anticipated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In recent years, high failure rates in phase III trials were observed. One of the main reasons is overoptimistic assumptions for the planning of phase III resulting from limited phase II information and/or unawareness of realistic success probabilities. We present an approach for planning a phase II trial in a time‐to‐event setting that considers the whole phase II/III clinical development programme. We derive stopping boundaries after phase II that minimise the number of events under side conditions for the conditional probabilities of correct go/no‐go decision after phase II as well as the conditional success probabilities for phase III. In addition, we give general recommendations for the choice of phase II sample size. Our simulations show that unconditional probabilities of go/no‐go decision as well as the unconditional success probabilities for phase III are influenced by the number of events observed in phase II. However, choosing more than 150 events in phase II seems not necessary as the impact on these probabilities then becomes quite small. We recommend considering aspects like the number of compounds in phase II and the resources available when determining the sample size. The lower the number of compounds and the lower the resources are for phase III, the higher the investment for phase II should be. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The phase II clinical trials often use the binary outcome. Thus, accessing the success rate of the treatment is a primary objective for the phase II clinical trials. Reporting confidence intervals is a common practice for clinical trials. Due to the group sequence design and relatively small sample size, many existing confidence intervals for phase II trials are much conservative. In this paper, we propose a class of confidence intervals for binary outcomes. We also provide a general theory to assess the coverage of confidence intervals for discrete distributions, and hence make recommendations for choosing the parameter in calculating the confidence interval. The proposed method is applied to Simon's [14] optimal two-stage design with numerical studies. The proposed method can be viewed as an alternative approach for the confidence interval for discrete distributions in general.  相似文献   

20.
Phase II trials in oncology drug development are usually conducted to perform the initial assessment of treatment activity. The common designs in this setting, for example, Simon 2-stage designs, are often developed based on testing whether a parameter of interest, usually a proportion (e.g. response rate), is less than a certain level or not. These designs usually consider only one parameter. However, sometimes we may encounter situations where we need to consider not a single parameter, but multiple parameters. This paper presents a two-stage design in which both primary and secondary endpoints are utilized in the decision rules. The family-wise Type 1 error rate and statistical power of the proposed design are investigated under a variety of situations by means of Monte-Carlo simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号