首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Predictive enrichment strategies use biomarkers to selectively enroll oncology patients into clinical trials to more efficiently demonstrate therapeutic benefit. Because the enriched population differs from the patient population eligible for screening with the biomarker assay, there is potential for bias when estimating clinical utility for the screening eligible population if the selection process is ignored. We write estimators of clinical utility as integrals averaging regression model predictions over the conditional distribution of the biomarker scores defined by the assay cutoff and discuss the conditions under which consistent estimation can be achieved while accounting for some nuances that may arise as the biomarker assay progresses toward a companion diagnostic. We outline and implement a Bayesian approach in estimating these clinical utility measures and use simulations to illustrate performance and the potential biases when estimation naively ignores enrichment. Results suggest that the proposed integral representation of clinical utility in combination with Bayesian methods provide a practical strategy to facilitate cutoff decision‐making in this setting. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This short communication supports that rule-based study designs such as the ‘3 + 3’ study design are still being used in early phase oncology development programs despite their inferior performance to model-based and model-assisted designs. Statisticians have an opportunity to shape and improve early phase oncology drug development programs by introducing newer, more efficient study designs that estimate the Optimal Biological dose to their oncology trialist colleges.  相似文献   

3.
Since the implementation of the International Conference on Harmonization (ICH) E14 guideline in 2005, regulators have required a “thorough QTc” (TQT) study for evaluating the effects of investigational drugs on delayed cardiac repolarization as manifested by a prolonged QTc interval. However, TQT studies have increasingly been viewed unfavorably because of their low cost effectiveness. Several researchers have noted that a robust drug concentration‐QTc (conc‐QTc) modeling assessment in early phase development should, in most cases, obviate the need for a subsequent TQT study. In December 2015, ICH released an “E14 Q&As (R3)” document supporting the use of conc‐QTc modeling for regulatory decisions. In this article, we propose a simple improvement of two popular conc‐QTc assessment methods for typical first‐in‐human crossover‐like single ascending dose clinical pharmacology trials. The improvement is achieved, in part, by leveraging routinely encountered (and expected) intrasubject correlation patterns encountered in such trials. A real example involving a single ascending dose and corresponding TQT trial, along with results from a simulation study, illustrate the strong performance of the proposed method. The improved conc‐QTc assessment will further enable highly reliable go/no‐go decisions in early phase clinical development and deliver results that support subsequent TQT study waivers by regulators.  相似文献   

4.
Many new anticancer agents can be combined with existing drugs, as combining a number of drugs may be expected to have a better therapeutic effect than monotherapy owing to synergistic effects. Furthermore, to drive drug development and to reduce the associated cost, there has been a growing tendency to combine these as phase I/II trials. With respect to phase I/II oncology trials for the assessment of dose combinations, in the existing methodologies in which efficacy based on tumor response and safety based on toxicity are modeled as binary outcomes, it is not possible to enroll and treat the next cohort of patients unless the best overall response has been determined in the current cohort. Thus, the trial duration might be potentially extended to an unacceptable degree. In this study, we proposed a method that randomizes the next cohort of patients in the phase II part to the dose combination based on the estimated response rate using all the available observed data upon determination of the overall response in the current cohort. We compared the proposed method to the existing method using simulation studies. These demonstrated that the percentage of optimal dose combinations selected in the proposed method is not less than that in the existing method and that the trial duration in the proposed method is shortened compared to that in the existing method. The proposed method meets both ethical and financial requirements, and we believe it has the potential to contribute to expedite drug development.  相似文献   

5.
Historically early phase oncology drug development programmes have been based on the belief that “more is better”. Furthermore, rule-based study designs such as the “3 + 3” design are still often used to identify the MTD. Phillips and Clark argue that newer Bayesian model-assisted designs such as the BOIN design should become the go to designs for statisticians for MTD finding. This short communication goes one stage further and argues that Bayesian model-assisted designs such as the BOIN12 which balances risk-benefit should be included as one of the go to designs for early phase oncology trials, depending on the study objectives. Identifying the optimal biological dose for future research for many modern targeted drugs, immunotherapies, cell therapies and vaccine therapies can save significant time and resources.  相似文献   

6.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The primary objective of a multi-regional clinical trial is to investigate the overall efficacy of the drug across regions and evaluate the possibility of applying the overall trial result to some specific region. A challenge arises when there is not enough regional sample size. We focus on the problem of evaluating applicability of a drug to a specific region of interest under the criterion of preserving a certain proportion of the overall treatment effect in the region. We propose a variant of James-Stein shrinkage estimator in the empirical Bayes context for the region-specific treatment effect. The estimator has the features of accommodating the between-region variation and finiteness correction of bias. We also propose a truncated version of the proposed shrinkage estimator to further protect risk in the presence of extreme value of regional treatment effect. Based on the proposed estimator, we provide the consistency assessment criterion and sample size calculation for the region of interest. Simulations are conducted to demonstrate the performance of the proposed estimators in comparison with some existing methods. A hypothetical example is presented to illustrate the application of the proposed method.  相似文献   

8.
Phase II clinical trials investigate whether a new drug or treatment has sufficient evidence of effectiveness against the disease under study. Two-stage designs are popular for phase II since they can stop in the first stage if the drug is ineffective. Investigators often face difficulties in determining the target response rates, and adaptive designs can help to set the target response rate tested in the second stage based on the number of responses observed in the first stage. Popular adaptive designs consider two alternate response rates, and they generally minimise the expected sample size at the maximum uninterested response rate. Moreover, these designs consider only futility as the reason for early stopping and have high expected sample sizes if the provided drug is effective. Motivated by this problem, we propose an adaptive design that enables us to terminate the single-arm trial at the first stage for efficacy and conclude which alternate response rate to choose. Comparing the proposed design with a popular adaptive design from literature reveals that the expected sample size decreases notably if any of the two target response rates are correct. In contrast, the expected sample size remains almost the same under the null hypothesis.  相似文献   

9.
Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.  相似文献   

10.
In phase I trials, the main goal is to identify a maximum tolerated dose under an assumption of monotonicity in dose–response relationships. On the other hand, such monotonicity is no longer applied to biologic agents because a different mode of action from that of cytotoxic agents potentially draws unimodal or flat dose–efficacy curves. Therefore, biologic agents require an optimal dose that provides a sufficient efficacy rate under an acceptable toxicity rate instead of a maximum tolerated dose. Many trials incorporate both toxicity and efficacy data, and drugs with a variety of modes of actions are increasingly being developed; thus, optimal dose estimation designs have been receiving increased attention. Although numerous authors have introduced parametric model-based designs, it is not always appropriate to apply strong assumptions in dose–response relationships. We propose a new design based on a Bayesian optimization framework for identifying optimal doses for biologic agents in phase I/II trials. Our proposed design models dose–response relationships via nonparametric models utilizing a Gaussian process prior, and the uncertainty of estimates is considered in the dose selection process. We compared the operating characteristics of our proposed design against those of three other designs through simulation studies. These include an expansion of Bayesian optimal interval design, the parametric model-based EffTox design, and the isotonic design. In simulations, our proposed design performed well and provided results that were more stable than those from the other designs, in terms of the accuracy of optimal dose estimations and the percentage of correct recommendations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号