首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study an information-theoretic variant of the graph coloring problem in which the objective function to minimize is the entropy of the coloring. The minimum entropy of a coloring is called the chromatic entropy and was shown by Alon and Orlitsky (IEEE Trans. Inform. Theory 42(5):1329–1339, 1996) to play a fundamental role in the problem of coding with side information. In this paper, we consider the minimum entropy coloring problem from a computational point of view. We first prove that this problem is NP-hard on interval graphs. We then show that, for every constant ε>0, it is NP-hard to find a coloring whose entropy is within (1−ε)log n of the chromatic entropy, where n is the number of vertices of the graph. A simple polynomial case is also identified. It is known that graph entropy is a lower bound for the chromatic entropy. We prove that this bound can be arbitrarily bad, even for chordal graphs. Finally, we consider the minimum number of colors required to achieve minimum entropy and prove a Brooks-type theorem. S. Fiorini acknowledges the support from the Fonds National de la Recherche Scientifique and GERAD-HEC Montréal. G. Joret is a F.R.S.-FNRS Research Fellow.  相似文献   

2.
We revisit in this paper the stochastic model for minimum graph-coloring introduced in (Murat and Paschos in Discrete Appl. Math. 154:564–586, 2006), and study the underlying combinatorial optimization problem (called probabilistic coloring) in bipartite and split graphs. We show that the obvious 2-coloring of any connected bipartite graph achieves standard-approximation ratio 2, that when vertex-probabilities are constant probabilistic coloring is polynomial and, finally, we propose a polynomial algorithm achieving standard-approximation ratio 8/7. We also handle the case of split graphs. We show that probabilistic coloring is NP-hard, even under identical vertex-probabilities, that it is approximable by a polynomial time standard-approximation schema but existence of a fully a polynomial time standard-approximation schema is impossible, even for identical vertex-probabilities, unless P=NP. We finally study differential-approximation of probabilistic coloring in both bipartite and split graphs. Part of this research has been performed while the second author was with the LAMSADE on a research position funded by the CNRS.  相似文献   

3.
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset XV and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2 e(G)⌉≤t(G)≤⌈log 2 e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or for k≥6. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. J.S.-t.J. is supported in part by the National Science Council under grant NSC89-2218-E-260-013. G.J.C. is supported in part by the National Science Council under grant NSC93-2213-E002-28. Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan. National Center for Theoretical Sciences, Taipei Office.  相似文献   

4.
《Risk analysis》2018,38(5):929-946
Graphs show promise for improving communications about different types of risks, including health risks, financial risks, and climate risks. However, graph designs that are effective at meeting one important risk communication goal (promoting risk‐avoidant behaviors) can at the same time compromise another key goal (improving risk understanding). We developed and tested simple bar graphs aimed at accomplishing these two goals simultaneously. We manipulated two design features in graphs, namely, whether graphs depicted the number of people affected by a risk and those at risk of harm (“foreground+background”) versus only those affected (“foreground‐only”), and the presence versus absence of simple numerical labels above bars. Foreground‐only displays were associated with larger risk perceptions and risk‐avoidant behavior (i.e., willingness to take a drug for heart attack prevention) than foreground+background displays, regardless of the presence of labels. Foreground‐only graphs also hindered risk understanding when labels were not present. However, the presence of labels significantly improved understanding, eliminating the detrimental effect of foreground‐only displays. Labels also led to more positive user evaluations of the graphs, but did not affect risk‐avoidant behavior. Using process modeling we identified mediators (risk perceptions, understanding, user evaluations) that explained the effect of display type on risk‐avoidant behavior. Our findings contribute new evidence to the graph design literature: unlike what was previously feared, we demonstrate that it is possible to design foreground‐only graphs that promote intentions for behavior change without a detrimental effect on risk understanding. Implications for the design of graphical risk communications and decision support are discussed.  相似文献   

5.
Gossiping in a communication network has long been studied as a combinatorial optimization problem in graphs under many different objective functions and communication models. In this paper, we propose a new online distributed gossiping protocol in the multicasting communication environment, where each node knows only its immediate neighbors. We show that the protocol can tolerate multiple node and link faults, mobility of nodes in the network (as long as the network remains connected) and it is more efficient than the a recently proposed protocol. The research reported in this paper is supported by NSF grant # ANI-0218495.  相似文献   

6.
Power assignment for wireless ad hoc networks is to assign a power for each wireless node such that the induced communication graph has some required properties. Recently research efforts have focused on finding the minimum power assignment to guarantee the connectivity or fault-tolerance of the network. In this paper, we study a new problem of finding the power assignment such that the induced communication graph is a spanner for the original communication graph when all nodes have the maximum power. Here, a spanner means that the length of the shortest path in the induced communication graph is at most a constant times of the length of the shortest path in the original communication graph. Polynomial time algorithm is given to minimize the maximum assigned power with spanner property. The algorithm also works for any other property that can be tested in polynomial time and is monotone. We then give a polynomial time approximation method to minimize the total transmission radius of all nodes. Finally, we propose two heuristics and conduct extensive simulations to study their performance when we aim to minimize the total assigned power of all nodes. The author is partially supported by NSF CCR-0311174.  相似文献   

7.
In the maximum dispersion problem, a given set of objects has to be partitioned into a number of groups. Each object has a non-negative weight and each group has a target weight, which may be different for each group. In addition to meeting the target weight of each group, all objects assigned to the same group should be as dispersed as possible with respect to some distance measure between pairs of objects. Potential applications for this problem come from such diverse fields as the problem of creating study groups or the design of waste collection systems. We develop and compare two different (mixed-) integer linear programming formulations for the problem. We also study a specific relaxation that enables us to derive tight bounds that improve the effectiveness of the formulations. Thereby, we obtain an upper bound by finding in an auxiliary graph subsets of given size with minimal diameter. A lower bound is derived based on the relation of the optimal solution of the relaxation to the chromatic number of a series of auxiliary graphs. Finally, we propose an exact solution scheme for the maximum dispersion problem and present extensive computational experiments to assess its efficiency.  相似文献   

8.
This paper presents a (10+ε)-approximation algorithm to compute minimum-weight connected dominating set (MWCDS) in unit disk graph. MWCDS is to select a vertex subset with minimum weight for a given unit disk graph, such that each vertex of the graph is contained in this subset or has a neighbor in this subset. Besides, the subgraph induced by this vertex subset is connected. Our algorithm is composed of two phases: the first phase computes a dominating set, which has approximation ratio 6+ε (ε is an arbitrary positive number), while the second phase connects the dominating sets computed in the first phase, which has approximation ratio 4. This work is supported in part by National Science Foundation under grant CCF-9208913 and CCF-0728851; and also supported by NSFC (60603003) and XJEDU.  相似文献   

9.
The Densest k-Subgraph (DkS) problem asks for a k-vertex subgraph of a given graph with the maximum number of edges. The problem is strongly NP-hard, as a generalization of the well known Clique problem and we also know that it does not admit a Polynomial Time Approximation Scheme (PTAS). In this paper we focus on special cases of the problem, with respect to the class of the input graph. Especially, towards the elucidation of the open questions concerning the complexity of the problem for interval graphs as well as its approximability for chordal graphs, we consider graphs having special clique graphs. We present a PTAS for stars of cliques and a dynamic programming algorithm for trees of cliques. M.L. is co-financed within Op. Education by the ESF (European Social Fund) and National Resources. V.Z. is partially supported by the Special Research Grants Account of the University of Athens under Grant 70/4/5821.  相似文献   

10.
In this paper we consider a fundamental problem in the area of viral marketing, called Target Set Selection problem. We study the problem when the underlying graph is a block-cactus graph, a chordal graph or a Hamming graph. We show that if G is a block-cactus graph, then the Target Set Selection problem can be solved in linear time, which generalizes Chen’s result (Discrete Math. 23:1400–1415, 2009) for trees, and the time complexity is much better than the algorithm in Ben-Zwi et al. (Discrete Optim., 2010) (for bounded treewidth graphs) when restricted to block-cactus graphs. We show that if the underlying graph G is a chordal graph with thresholds θ(v)≤2 for each vertex v in G, then the problem can be solved in linear time. For a Hamming graph G having thresholds θ(v)=2 for each vertex v of G, we precisely determine an optimal target set S for (G,θ). These results partially answer an open problem raised by Dreyer and Roberts (Discrete Appl. Math. 157:1615–1627, 2009).  相似文献   

11.
In this paper we continue the investigation of total domination in Cartesian products of graphs first studied in (Henning, M.A., Rall, D.F. in Graphs Comb. 21:63–69, 2005). A set S of vertices in a graph G is a total dominating set of G if every vertex in G is adjacent to some vertex in S. The maximum cardinality of a minimal total dominating set of G is the upper total domination number of G, denoted by Γ t (G). We prove that the product of the upper total domination numbers of any graphs G and H without isolated vertices is at most twice the upper total domination number of their Cartesian product; that is, Γ t (G)Γ t (H)≤2Γ t (G □ H). Research of M.A. Henning supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

12.
For given a pair of nodes in a graph, the minimum non-separating path problem looks for a minimum weight path between the two nodes such that the remaining graph after removing the path is still connected. The balanced connected bipartition (BCP2) problem looks for a way to bipartition a graph into two connected subgraphs with their weights as equal as possible. In this paper we present an algorithm in time O(NlogN) for finding a minimum weight non-separating path between two given nodes in a grid graph of N nodes with positive weight. This result leads to a 5/4-approximation algorithm for the BCP2 problem on grid graphs, which is the currently best ratio achieved in polynomial time. We also developed an exact algorithm for the BCP2 problem on grid graphs. Based on the exact algorithm and a rounding technique, we show an approximation scheme, which is a fully polynomial time approximation scheme for fixed number of rows.  相似文献   

13.
We study the problem of processing supergraph queries on graph databases. A graph database D is a large set of graphs. A supergraph query q on D is to retrieve all the graphs in D such that q is a supergraph of them. The large number of graphs in databases and the NP-completeness of subgraph isomorphism testing make it challenging to efficiently processing supergraph queries. In this paper, a new approach to processing supergraph queries is proposed. Specifically, a method for compactly organizing graph databases is first presented. Common subgraphs of the graphs in a database are stored only once in the compact organization of the database, in order to reduce the overall cost of subgraph isomorphism testings from the stored graphs to queries during query processing. Then, an exact algorithm and an approximate algorithm for generating the significant feature set with optimal order are proposed, followed by the algorithms for indices construction on graph databases. The optimal order on the feature set is to reduce the number of subgraph isomorphism testings during query processing. Based on the compact organization of graph databases, a novel algorithm for testing subgraph isomorphisms from multiple graphs to one graph is presented. Finally, based on all the above techniques, a query processing method is proposed. Analytical and experimental results show that the proposed algorithms outperform the existing similar algorithms by one to two orders of magnitude.  相似文献   

14.
Lee et al. (Lee, K., Chang, S.Y., and Hong, Y., 2004. Continuous slab caster scheduling and interval graphs. Production Planning & Control, 13 (5), 495–501) have introduced a slab caster scheduling problem and developed an optimal algorithm. Their algorithm is efficient but an offline algorithm that we need the information on all the customer orders a priori to implement. In this article, we propose an online algorithm that we can implement without knowledge of the orders yet to arrive. We show that the offline version of our new algorithm also provides an optimal solution and the online version has the worst case performance ratio of 3. We also give a short proof on the correctness of Lee et al.'s algorithm.  相似文献   

15.
Given an undirected edge-capacitated graph and given (possibly) different subsets of vertices, we consider the problem of selecting a maximum (weighted) set of Steiner trees, each tree spanning a subset of vertices, without violating the capacity constraints. This problem is motivated by applications in multicast communication networks. We give an integer linear programming (ILP) formulation for the problem, and observe that its linear programming (LP) relaxation is a fractional packing problem with exponentially many variables and a block (sub-)problem that cannot be solved in polynomial time. To this end, we take an r-approximate block solver (a weak block solver) to develop a (1−ε)/r-approximation algorithm for the LP relaxation. The algorithm has a polynomial coordination complexity for any ε∈(0,1). To the best of our knowledge, this is the first approximation result for fractional packing problems with only weak block solvers (with arbitrarily large approximation ratio) and a coordination complexity that is polynomial in the input size. This leads also to an approximation algorithm for the underlying tree packing problem. Finally, we extend our results to an important multicast routing and wavelength assignment problem in optical networks, where each Steiner tree is to be assigned one of a limited set of given wavelengths, so that trees crossing the same fiber are assigned different wavelengths. A preliminary version of this paper appeared in the Proceedings of the 1st Workshop on Internet and Network Economics (WINE 2005), LNCS, vol. 3828, pp. 688–697. Research supported by a MITACS grant for all the authors, an NSERC post doctoral fellowship for the first author, the NSERC Discovery Grant #5-48923 for the second and fourth author, NSERC Discovery Grant #15296 for the third author, the Canada Research Chair Program for the second author, and an NSERC industrial and development fellowship for the fourth author.  相似文献   

16.
We consider the on-line dial-a-ride problem, where a server fulfills requests that arrive over time. Each request has a source, destination, and release time. We study a variation of this problem where each request also has a revenue that the server earns for fulfilling the request. The goal is to serve requests within a time limit while maximizing the total revenue. We first prove that no deterministic online algorithm can be competitive unless the input graph is complete and edge weights are unit. We therefore focus on these graphs and present a 2-competitive algorithm for this problem. We also consider two variations of this problem: (1) the input graph is complete bipartite and (2) there is a single node that is the source for every request, and present a 1-competitive algorithm for the former and an optimal algorithm for the latter. We also provide experimental results for the complete and complete bipartite graphs. Our simulations support our theoretical findings and demonstrate that our algorithms perform well under settings that reflect realistic dial-a-ride systems.  相似文献   

17.
Reliability is a very important issue in Mobile Ad hoc NETworks (MANETs). Shortest paths are usually used to route packets in MANETs. However, a shortest path may fail quickly, because some of the wireless links along a shortest path may be broken shortly after the path is established due to mobility of mobile nodes. Rediscovering routes may result in substantial data loss and message exchange overhead. In this paper, we study reliable ad hoc routing in the urban environment. Specifically, we formulate and study two optimization problems. In the minimum Cost Duration-bounded Path (CDP) routing problem, we seek a minimum cost source to destination path with duration no less than a given threshold. In the maximum Duration Cost-bounded Path (DCP) routing problem, we seek a maximum duration source to destination path with cost no greater than a given threshold. We use a waypoint graph to model the working area of a MANET and present an offline algorithm to compute a duration prediction table for the given waypoint graph. An entry in the duration prediction table contains the guaranteed worst-case duration of the corresponding wireless link. We then present an efficient algorithm which computes a minimum cost duration-bounded path, using the information provided in the duration prediction table. We also present a heuristic algorithm for the DCP routing problem. In addition, we show that the proposed prediction and routing schemes can be easily applied for designing reliable ad hoc routing protocols. Simulation results show that our mobility prediction based routing algorithms lead to higher network throughput and longer average path duration, compared with the shortest path routing. This research was supported in part by ARO grant W911NF-04-1-0385 and NSF grant CCF-0431167. The information reported here does not reflect the position or the policy of the federal government.  相似文献   

18.
We study a new coloring concept which generalizes the classical vertex coloring problem in a graph by extending the notion of stable sets to split graphs. First of all, we propose the packing problem of finding the split graph of maximum size where a split graph is a graph G = (V,E) in which the vertex set V can be partitioned into a clique K and a stable set S. No condition is imposed on the edges linking vertices in S to the vertices in K. This maximum split graph problem gives rise to an associated partitioning problem that we call the split-coloring problem. Given a graph, the objective is to cover all his vertices by a least number of split graphs. Definitions related to this new problem are introduced. We mention some polynomially solvable cases and describe open questions on this area. An erratum to this article is available at .  相似文献   

19.
In this paper, we consider a new visual cryptography scheme that allows for sharing of multiple secret images on graphs: we are given an arbitrary graph (V,E) where every node and every edge are assigned an arbitrary image. Images on the vertices are “public” and images on the edges are “secret”. The problem that we are considering is how to make a construction such that when the encoded images of two adjacent vertices are printed on transparencies and overlapped, the secret image corresponding to the edge is revealed. We define the most stringent security guarantees for this problem (perfect secrecy) and show a general construction for all graphs where the cost (in terms of pixel expansion and contrast of the images) is proportional to the chromatic number of the cube of the underlying graph. For the case of bounded degree graphs, this gives us constant-factor pixel expansion and contrast. This compares favorably to previous works, where pixel expansion and contrast are proportional to the number of images.  相似文献   

20.
An Approximation Scheme for Bin Packing with Conflicts   总被引:1,自引:1,他引:0  
In this paper we consider the following bin packing problem with conflicts. Given a set of items V = {1,..., n} with sizes s1,..., s (0,1) and a conflict graph G = (V, E), we consider the problem to find a packing for the items into bins of size one such that adjacent items (j, j) E are assigned to different bins. The goal is to find an assignment with a minimum number of bins. This problem is a natural generalization of the classical bin packing problem.We propose an asymptotic approximation scheme for the bin packing problem with conflicts restricted to d-inductive graphs with constant d. This graph class contains trees, grid graphs, planar graphs and graphs with constant treewidth. The algorithm finds an assignment for the items such that the generated number of bins is within a factor of (1 + ) of optimal provided that the optimum number is sufficiently large. The running time of the algorithm is polynomial both in n and in .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号