首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Probabilistic risk assessments are enjoying increasing popularity as a tool to characterize the health hazards associated with exposure to chemicals in the environment. Because probabilistic analyses provide much more information to the risk manager than standard “point” risk estimates, this approach has generally been heralded as one which could significantly improve the conduct of health risk assessments. The primary obstacles to replacing point estimates with probabilistic techniques include a general lack of familiarity with the approach and a lack of regulatory policy and guidance. This paper discusses some of the advantages and disadvantages of the point estimate vs. probabilistic approach. Three case studies are presented which contrast and compare the results of each. The first addresses the risks associated with household exposure to volatile chemicals in tapwater. The second evaluates airborne dioxin emissions which can enter the food-chain. The third illustrates how to derive health-based cleanup levels for dioxin in soil. It is shown that, based on the results of Monte Carlo analyses of probability density functions (PDFs), the point estimate approach required by most regulatory agencies will nearly always overpredict the risk for the 95th percentile person by a factor of up to 5. When the assessment requires consideration of 10 or more exposure variables, the point estimate approach will often predict risks representative of the 99.9th percentile person rather than the 50th or 95th percentile person. This paper recommends a number of data distributions for various exposure variables that we believe are now sufficiently well understood to be used with confidence in most exposure assessments. A list of exposure variables that may require additional research before adequate data distributions can be developed are also discussed.  相似文献   

2.
Approaches to risk assessment have been shown to vary among regulatory agencies and across jurisdictional boundaries according to the different assumptions and justifications used. Approaches to screening-level risk assessment from six international agencies were applied to an urban case study focusing on benzo[a]pyrene (B[a]P) exposure and compared in order to provide insight into the differences between agency methods, assumptions, and justifications. Exposure estimates ranged four-fold, with most of the dose stemming from exposure to animal products (8-73%) and plant products (24-88%). Total cancer risk across agencies varied by two orders of magnitude, with exposure to air and plant and animal products contributing most to total cancer risk, while the air contribution showed the greatest variability (1-99%). Variability in cancer risk of 100-fold was attributed to choices of toxicological reference values (TRVs), either based on a combination of epidemiological and animal data, or on animal data. The contribution and importance of the urban exposure pathway for cancer risk varied according to the TRV and, ultimately, according to differences in risk assessment assumptions and guidance. While all agency risk assessment methods are predicated on science, the study results suggest that the largest impact on the differential assessment of risk by international agencies comes from policy and judgment, rather than science.  相似文献   

3.
Although occupational exposure limits are sought to establish health-based standards, they do not always give a sufficient basis for planning an indoor air climate that is good and comfortable for the occupants in industrial work rooms. This paper considers methodologies by which the desired level, i.e., target level, of air quality in industrial settings can be defined, taking into account feasibility issues. Risk assessment based on health criteria is compared with risk-assessment based on "Best Available Technology" (BAT). Because health-based risk estimates at low concentration regions are rather inaccurate, the technology-based approach is emphasized. The technological approach is based on information on the prevailing concentrations in industrial work environments and the benchmark air quality attained with the best achievable technology. The prevailing contaminant concentrations are obtained from a contaminant exposure databank, and the benchmark air quality by field measurements in industrial work rooms equipped with advanced ventilation and production technology. As an example, the target level assessment has been applied to formaldehyde, total inorganic dust and hexavalent chromium, which are common contaminants in work room air.  相似文献   

4.
An ecological risk assessment (ERA) was conducted as part of the Baseline Risk Assessment of the Remedial Investigation (RI) for the Baxter Springs/Treece subsites, Cherokee County, Kansas Superfund site, a former metals mining site. Chemicals of potential concern were heavy metals associated with mine wastes and with base metal ore deposits that were characteristic of this area. An EPA-approved method was used to developed site-specific ambient water quality criteria. Ecological impacts were assessed using three complimentary approaches. First, potential chronic impacts were assessed by applying the toxicity quotient approach (i.e., a comparison of the measured concentration of site-related metals in surface water with calculated site-specific health-based criteria). Secondly, semi-quantitative comparative ecology data were used to provide a direct measure of impacts to key species. Finally, data on other factors (e.g., acclimation and tolerance evolution) that may affect the bioavailability and toxicity of site-related metals were also considered. Information from these three sources were used to obtain a realistic picture of actual and potential population- and community-level effects associated with exposure to mining-related metals.  相似文献   

5.
Skin Cancer and Inorganic Arsenic: Uncertainty-Status of Risk   总被引:5,自引:0,他引:5  
The current U.S. EPA standard for inorganic arsenic in drinking water is 50 ppb (μg/L), dating to the National Interim Primary Drinking Water Regulation of 1976. The current EPA risk analysis predicts an increased lifetime skin cancer risk on the order of 3 or 4 per 1000 from chronic exposure at that concentration. Revision of the standard to only a few ppb, perhaps even less than 1 ppb, may be indicated by the EPA analysis to reduce the lifetime risk to an acceptable level. The cost to water utilities, and ultimately to their consumers, to conform to such a large reduction in the standard could easily reach several billion dollars, so it is particularly important to assess accurately the current risk and the risk reduction that would be achieved by a lower standard. This article addresses the major sources of uncertainty in the EPA analysis with respect to this objective. Specifically, it focuses on uncertainty and variability in the exposure estimates for the landmark study of Tseng and colleagues in Taiwan, analyzed using a reconstruction of the their exposure data. It is concluded that while the available dataset is suitable to establish the hazard of skin cancer, it is too highly summarized for reliable dose-response assessment. A new epidemiologic study is needed, designed for the requirements of dose-response assessment.  相似文献   

6.
Hoover  Sara M. 《Risk analysis》1999,19(4):527-545
Exposure to persistent organochlorines in breast milk was estimated probabilistically for Canadian infants. Noncancer health effects were evaluated by comparing the predicted exposure distributions to published guidance values. For chemicals identified as potential human carcinogens, cancer risks were evaluated using standard methodology typically applied in Canada, as well as an alternative method developed under the Canadian Environmental Protection Act. Potential health risks associated with exposure to persistent organochlorines were quantitatively and qualitatively weighed against the benefits of breast-feeding. Current levels of the majority of contaminants identified in Canadian breast milk do not pose unacceptable risks to infants. Benefits of breast-feeding are well documented and qualitatively appear to outweigh potential health concerns associated with organochlorine exposure. Furthermore, the risks of mortality from not breast-feeding estimated by Rogan and colleagues exceed the theoretical cancer risks estimated for infant exposure to potential carcinogens in Canadian breast milk. Although levels of persistent compounds have been declining in Canadian breast milk, potentially significant risks were estimated for exposure to polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans. Follow-up work is suggested that would involve the use of a physiologically based toxicokinetic model with probabilistic inputs to predict dioxin exposure to the infant. A more detailed risk analysis could be carried out by coupling the exposure estimates with a dose–response analysis that accounts for uncertainty.  相似文献   

7.
Current methods for cancer risk assessment result in single values, without any quantitative information on the uncertainties in these values. Therefore, single risk values could easily be overinterpreted. In this study, we discuss a full probabilistic cancer risk assessment approach in which all the generally recognized uncertainties in both exposure and hazard assessment are quantitatively characterized and probabilistically evaluated, resulting in a confidence interval for the final risk estimate. The methodology is applied to three example chemicals (aflatoxin, N‐nitrosodimethylamine, and methyleugenol). These examples illustrate that the uncertainty in a cancer risk estimate may be huge, making single value estimates of cancer risk meaningless. Further, a risk based on linear extrapolation tends to be lower than the upper 95% confidence limit of a probabilistic risk estimate, and in that sense it is not conservative. Our conceptual analysis showed that there are two possible basic approaches for cancer risk assessment, depending on the interpretation of the dose‐incidence data measured in animals. However, it remains unclear which of the two interpretations is the more adequate one, adding an additional uncertainty to the already huge confidence intervals for cancer risk estimates.  相似文献   

8.
A cancer risk assessment methodology based upon the Armitage–Doll multistage model of cancer is applied to animal bioassay data. The method utilizes the exact time-dependent dose pattern used in a bioassay rather than some single measure of dose such as average dose rate or cumulative dose. The methodology can be used to predict risks from arbitrary exposure patterns including, for example, intermittent exposure and short-term exposure occurring at an arbitrary age. The methodology is illustrated by applying it to a National Cancer Institute bioassay of ethylene dibromide in which dose rates were modified several times during the course of the experiment.  相似文献   

9.
Historically, U.S. regulators have derived cancer slope factors by using applied dose and tumor response data from a single key bioassay or by averaging the cancer slope factors of several key bioassays. Recent changes in U.S. Environmental Protection Agency (EPA) guidelines for cancer risk assessment have acknowledged the value of better use of mechanistic data and better dose–response characterization. However, agency guidelines may benefit from additional considerations presented in this paper. An exploratory study was conducted by using rat brain tumor data for acrylonitrile (AN) to investigate the use of physiologically based pharmacokinetic (PBPK) modeling along with pooling of dose–response data across routes of exposure as a means for improving carcinogen risk assessment methods. In this study, two contrasting assessments were conducted for AN-induced brain tumors in the rat on the basis of (1) the EPA's approach, the dose–response relationship was characterized by using administered dose/concentration for each of the key studies assessed individually; and (2) an analysis of the pooled data, the dose–response relationship was characterized by using PBPK-derived internal dose measures for a combined database of ten bioassays. The cancer potencies predicted for AN by the contrasting assessments are remarkably different (i.e., risk-specific doses differ by as much as two to four orders of magnitude), with the pooled data assessments yielding lower values. This result suggests that current carcinogen risk assessment practices overestimate AN cancer potency. This methodology should be equally applicable to other data-rich chemicals in identifying (1) a useful dose measure, (2) an appropriate dose–response model, (3) an acceptable point of departure, and (4) an appropriate method of extrapolation from the range of observation to the range of prediction when a chemical's mode of action remains uncertain.  相似文献   

10.
Historically, U.S. regulators have derived cancer slope factors by using applied dose and tumor response data from a single key bioassay or by averaging the cancer slope factors of several key bioassays. Recent changes in U.S. Environmental Protection Agency (EPA) guidelines for cancer risk assessment have acknowledged the value of better use of mechanistic data and better dose-response characterization. However, agency guidelines may benefit from additional considerations presented in this paper. An exploratory study was conducted by using rat brain tumor data for acrylonitrile (AN) to investigate the use of physiologically based pharmacokinetic (PBPK) modeling along with pooling of dose-response data across routes of exposure as a means for improving carcinogen risk assessment methods. In this study, two contrasting assessments were conducted for AN-induced brain tumors in the rat on the basis of (1) the EPA's approach, the dose-response relationship was characterized by using administered dose/concentration for each of the key studies assessed individually; and (2) an analysis of the pooled data, the dose-response relationship was characterized by using PBPK-derived internal dose measures for a combined database of ten bioassays. The cancer potencies predicted for AN by the contrasting assessments are remarkably different (i.e., risk-specific doses differ by as much as two to four orders of magnitude), with the pooled data assessments yielding lower values. This result suggests that current carcinogen risk assessment practices overestimate AN cancer potency. This methodology should be equally applicable to other data-rich chemicals in identifying (1) a useful dose measure, (2) an appropriate dose-response model, (3) an acceptable point of departure, and (4) an appropriate method of extrapolation from the range of observation to the range of prediction when a chemical's mode of action remains uncertain.  相似文献   

11.
Dioxins and airborne fine particles are both environmental health problems that have been the subject of active public debate. Knowledge on fine particles has increased substantially during the last 10 years, and even the current, lowered levels in the Europe and in the United States appear to be a major public health problem. On the other hand, dioxins are ubiquitous persistent contaminants, some being carcinogens at high doses, and therefore of great concern. Our aim was to (a) quantitatively analyze the two pollutant health risks and (b) study the changes in risk in view of the current and forthcoming EU legislations on pollutants. We performed a comparative risk assessment for both pollutants in the Helsinki metropolitan area (Finland) and estimated the health effects with several scenarios. For primary fine particles: a comparison between the present emission situation for heavy-duty vehicles and the new fine particle emission standards set by the EU. For dioxins: an EU directive that regulates commercial fishing of Baltic salmon and herring that exceed the dioxin concentration limit set for fish meat, and a derogation (= exemption) from the directive for these two species. Both of these two decisions are very topical issues and this study estimates the expected changes in health effects due to these regulations. It was found that the estimated fine particle risk clearly outweighed the estimated dioxin risk. A substantial improvement to public health could be achieved by initiating reductions in emission standards; about 30 avoided premature deaths annually in the study area. In addition, the benefits of fish consumption due to omega-3 exposure were notably higher than the potential dioxin cancer risk. Both regulations were instigated as ways of promoting public health.  相似文献   

12.
The distributional approach for uncertainty analysis in cancer risk assessment is reviewed and extended. The method considers a combination of bioassay study results, targeted experiments, and expert judgment regarding biological mechanisms to predict a probability distribution for uncertain cancer risks. Probabilities are assigned to alternative model components, including the determination of human carcinogenicity, mode of action, the dosimetry measure for exposure, the mathematical form of the dose‐response relationship, the experimental data set(s) used to fit the relationship, and the formula used for interspecies extrapolation. Alternative software platforms for implementing the method are considered, including Bayesian belief networks (BBNs) that facilitate assignment of prior probabilities, specification of relationships among model components, and identification of all output nodes on the probability tree. The method is demonstrated using the application of Evans, Sielken, and co‐workers for predicting cancer risk from formaldehyde inhalation exposure. Uncertainty distributions are derived for maximum likelihood estimate (MLE) and 95th percentile upper confidence limit (UCL) unit cancer risk estimates, and the effects of resolving selected model uncertainties on these distributions are demonstrated, considering both perfect and partial information for these model components. A method for synthesizing the results of multiple mechanistic studies is introduced, considering the assessed sensitivities and selectivities of the studies for their targeted effects. A highly simplified example is presented illustrating assessment of genotoxicity based on studies of DNA damage response caused by naphthalene and its metabolites. The approach can provide a formal mechanism for synthesizing multiple sources of information using a transparent and replicable weight‐of‐evidence procedure.  相似文献   

13.
A GIS-Based Framework for Hazardous Materials Transport Risk Assessment   总被引:2,自引:0,他引:2  
This article presents a methodology for assessment of the hazardous materials transport risk in a multicommodity, multiple origin-destination setting. The proposed risk assessment methodology was integrated with a Geographical Information System (GIS), which made large-scale implementation possible. A GIS-based model of the truck shipments of dangerous goods via the highway network of Quebec and Ontario was developed. Based on the origin and destination of each shipment, the risk associated with the routes that minimize (1) the transport distance, (2) the population exposure, (3) the expected number of people to be evacuated in case of an incident, and (4) the probability of an incident during transportation was evaluated. Using these assessments, a government agency can estimate the impact of alternative policies that could alter the carriers' route choices. A related issue is the spatial distribution of transport risk, because an unfair distribution is likely to cause public concern. Thus, an analysis of transport risk equity in the provinces of Quebec and Ontario is also provided.  相似文献   

14.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been detected in human milk samples obtained in several countries. Possible sources include emissions from incineration of municipal waste in resource recovery facilities. A formula is presented for calculating the infant daily dose of dioxin equivalents from breast milk on the basis of the maternal daily intake. Application of the formula suggests that an infant breast-fed for 12 months would receive around 10% of the cumulative exposure dose per body weight that would be received by an adult with 50 years of exposure. Further analysis indicated that the contribution of dioxin equivalents from breast milk to an infant's body concentration at the end of 12 months of breast feeding would amount to 1.7 times the concentration in the mother. However, dioxin and furan emissions from a source calculated to result in worst-case lifetime cancer risks of the order of 1 in 100,000 are only likely to increase breast milk concentrations by around 1%-10% of the levels that have been detected in several countries. This finding suggests that there are major sources of dioxins and furans other than from municipal solid waste incineration that need to be identified.  相似文献   

15.
The exposure-response relationship for airborne hexavalent chromium exposure and lung cancer mortality is well described by a linear relative rate model. However, categorical analyses have been interpreted to suggest the presence of a threshold. This study investigates nonlinear features of the exposure response in a cohort of 2,357 chemical workers with 122 lung cancer deaths. In Poisson regression, a simple model representing a two-step carcinogenesis process was evaluated. In a one-stage context, fractional polynomials were investigated. Cumulative exposure dose metrics were examined corresponding to cumulative exposure thresholds, exposure intensity (concentration) thresholds, dose-rate effects, and declining burden of accumulated effect on future risk. A simple two-stage model of carcinogenesis provided no improvement in fit. The best-fitting one-stage models used simple cumulative exposure with no threshold for exposure intensity and had sufficient power to rule out thresholds as large as 30 microg/m3 CrO3 (16 microg/m3 as Cr+6) (one-sided 95% confidence limit, likelihood ratio test). Slightly better-fitting models were observed with cumulative exposure thresholds of 0.03 and 0.5 mg-yr/m3 (as CrO3) with and without an exposure-race interaction term, respectively. With the best model, cumulative exposure thresholds as large as 0.4 mg-yr/m3 CrO3 were excluded (two-sided upper 95% confidence limit, likelihood ratio test). A small departure from dose-rate linearity was observed, corresponding to (intensity)0.8 but was not statistically significant. Models in which risk-inducing damage burdens declined over time, based on half-lives ranging from 0.1 to 40 years, fit less well than assuming a constant burden. A half-life of 8 years or less was excluded (one-sided 95% confidence limit). Examination of nonlinear features of the hexavalent chromium-lung cancer exposure response in a population used in a recent risk assessment supports using the traditional (lagged) cumulative exposure paradigm: no intensity (concentration) threshold, linearity in intensity, and constant increment in risk following exposure.  相似文献   

16.
Dioxin (2,3,7,8-tetrachlorodibenzo- p -dioxin; TCDD), a widespread polychlorinated aromatic hydrocarbon, caused tumors in the liver and other sites when administered chronically to rats at doses as low as 0.01 μg/kg/day. It functions in combination with a cellular protein, the Ah receptor, to alter gene regulation, and this resulting modulation of gene expression is believed to be obligatory for both dioxin toxicity and carcinogenicity. The U.S. EPA is reevaluating its dioxin risk assessment and, as part of this process, will be developing risk assessment approaches for chemicals, such as dioxin, whose toxicity is receptor-mediated. This paper describes a receptor-mediated physiologically based pharmacokinetic (PB-PK) model for the tissue distribution and enzyme-inducing properties of dioxin and discusses the potential role of these models in a biologically motivated risk assessment. In this model, ternary interactions among the Ah receptor, dioxin, and DNA binding sites lead to enhanced production of specific hepatic proteins. The model was used to examine the tissue disposition of dioxin and the induction of both a dioxin-binding protein (presumably, cytochrome P4501A2), and cytochrome P4501A1. Tumor promotion correlated more closely with predicted induction of P4501A1 than with induction of hepatic binding proteins. Although increased induction of these proteins is not expected to be causally related to tumor formation, these physiological dosimetry and gene-induction response models will be important for biologically motivated dioxin risk assessments in determining both target tissue dose of dioxin and gene products and in examining the relationship between these gene products and the cellular events more directly involved in tumor promotion.  相似文献   

17.
Moolgavkar  Suresh H.  Luebeck  E. Georg  Turim  Jay  Hanna  Linda 《Risk analysis》1999,19(4):599-611
We present the results of a quantitative assessment of the lung cancer risk associated with occupational exposure to refractory ceramic fibers (RCF). The primary sources of data for our risk assessment were two long-term oncogenicity studies in male Fischer rats conducted to assess the potential pathogenic effects associated with prolonged inhalation of RCF. An interesting feature of the data was the availability of the temporal profile of fiber burden in the lungs of experimental animals. Because of this information, we were able to conduct both exposure–response and dose–response analyses. Our risk assessment was conducted within the framework of a biologically based model for carcinogenesis, the two-stage clonal expansion model, which allows for the explicit incorporation of the concepts of initiation and promotion in the analyses. We found that a model positing that RCF was an initiator had the highest likelihood. We proposed an approach based on biological considerations for the extrapolation of risk to humans. This approach requires estimation of human lung burdens for specific exposure scenarios, which we did by using an extension of a model due to Yu. Our approach acknowledges that the risk associated with exposure to RCF depends on exposure to other lung carcinogens. We present estimates of risk in two populations: (1) a population of nonsmokers and (2) an occupational cohort of steelworkers not exposed to coke oven emissions, a mixed population that includes both smokers and nonsmokers.  相似文献   

18.
The U.S. Environmental Protection Agency's (EPA) Integrated Risk Information System (IRIS) database, the authoritative source of U.S. risk assessment toxicity factors, currently lacks an oral reference dose (RfD) for copper. In the absence of such a value, various health-based reference values for copper are available for use in risk assessment. We summarize the scientific bases and differences in assumptions among key reference values for ingested copper to guide selection of appropriate values for risk assessment. A comprehensive review of the scientific literature best supports the oral RfD of 0.04 mg/kg body weight/day derived by EPA from their Drinking Water Action Level. This value is based on acute gastrointestinal effects but is further supported by broader analysis of copper deficiency and toxicity.  相似文献   

19.
Estimation of Unit Risk for Coke Oven Emissions   总被引:1,自引:0,他引:1  
In 1984, based on epidemiological data on cohorts of coke oven workers, USEPA estimated a unit risk for lung cancer associated with continuous exposure from birth to 1 pg/m3 of coke oven emissions, of 6.2 × This risk assessment was based on information on the cohorts available through 1966. Follow-up of these cohorts has now been extended to 1982 and, moreover, individual job histories, which were not available in 1984, have been constructed. In this study, lung cancer mortality in these cohorts of coke oven workers with extended follow-up was analyzed using standard techniques of survival analysis and a new approach based on the two stage clonal expansion model of carcinogenesis. The latter approach allows the explicit consideration of detailed patterns of exposure of each individual in the cohort. The analyses used the extended follow-up data through 1982 and the detailed job histories now available. Based on these analyses, the best estimate of unit risk is 1.5 × with 95% confidence interval = 1.2 × 10-"1.8 X  相似文献   

20.
We employ the intake fraction (iF) as an effective tool for expressing the source-to-intake relationship for pollutant emissions in life cycle analysis (LCA) or comparative risk assessment. Intake fraction is the fraction of chemical mass emitted into the environment that eventually passes into a member of the population through inhalation, ingestion, or dermal exposure. To date, this concept has been primarily applied to pollutants whose primary route of exposure is inhalation. Here we extend the use of iF to multimedia pollutants with multiple exposure pathways. We use a level III multimedia model to calculate iF for TCDD and compare the result to one calculated from measured levels of dioxin toxic equivalents in the environment. We calculate iF for emissions to air and surface water for 308 chemicals. We correlate the primary exposure route with the magnitudes of the octanol-water partition coefficient, Kow, and of the air-water partitioning coefficient (dimensionless Henry constant), Kaw. This results in value ranges of Kow and Kaw where the chemical exposure route can be classified with limited input data requirements as primarily inhalation, primarily ingestion, or multipathway. For the inhalation and ingestion dominant pollutants, we also define empirical relationships based on chemical properties for quantifying the intake fraction. The empirical relationships facilitate rapid evaluation of many chemicals in terms of the intake. By defining a theoretical upper limit for iF in a multimedia environment we find that iF calculations provide insight into the multimedia model algorithms and help identify unusual patterns of exposure and questionable exposure model results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号