首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Suppose π1,…,πk are k normal populations with πi having unknown mean μi and unknown variance σ2. The population πi will be called δ?-optimal (or good) if μi is within a specified amountδ? of the largest mean. A two stage procedure is proposed which selects a subset of the k populations and guarantees with probability at least P? that the selected subset contains only δ?-optimal πi ’s. In addition to screening out non-good populations the rule guarantees a high proportion of sufficiently good πi’S will be selected.  相似文献   

3.
Suppose that we are given k(≥ 2) independent and normally distributed populations π1, …, πk where πi has unknown mean μi and unknown variance σ2 i (i = 1, …, k). Let μ[i] (i = 1, …, k) denote the ith smallest one of μ1, …, μk. A two-stage procedure is used to construct lower and upper confidence intervals for μ[i] and then use these to obtain a class of two-sided confidence intervals on μ[i] with fixed width. For i = k, the interval given by Chen and Dudewicz (1976) is a special case. Comparison is made between the class of two-sided intervals and a symmetric interval proposed by Chen and Dudewicz (1976) for the largest mean, and it is found that for large values of k at least one of the former intervals requires a smaller total sample size. The tables needed to actually apply the procedure are provided.  相似文献   

4.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

5.
Let π1…, πk denote k(≥ 2) populations with unknown means μ1 , …, μk and variances σ1 2 , …, σk 2 , respectively and let πo denote the control population having mean μo and variance σo 2 . It is assumed that these populations are normally distributed with correlation matrix {ρij}. The goal is to select a subset, of populations of π1 , …, πk which contains all the populations with means larger than or equal to the mean of the control one. Procedures are given for selecting such a subset so that the probability that all the populations with means larger than or equal to the mean of the control one are included in the selected subset is at least equal to a predetermined value P?(l/k < P? < 1). The goal treated here is a first step screening procedure that allows the experimenter to choose a subset and withhold judgement about which one has the largest mean. Then, if the one with the largest mean is desired it can be chosen from the selected subset on the basis of cost and other considerations. Percentage points are also included.  相似文献   

6.
Let X1, , X2, …, X be distributed N(µ, σ2 x), let Y1, Y2, …, Y"n be distributed N(µ, σ2 y), and let X , X , … Xm, Y1, Y2, …, Yn be mutually independent. In this paper a method for setting confidence intervals on the common mean µ is proposed and evaluated.  相似文献   

7.
We define the Wishart distribution on the cone of positive definite matrices and an exponential distribution on the Lorentz cone as exponential dispersion models. We show that these two distributions possess a property of exact decomposition, and we use this property to solve the following problem: given q samples (yil,… yiNj), i = l,…,q, from a N(μii,) distribution, test H1 = Σ2 = … = σq. Using the exact decomposition property, the classical test statistic for H, involving q parameters pi = (Ni, - l)/2, i = 1,…,q, is replaced by a sequence of q - l test statistics for the sequence of tests Hi,:σ12 = … =σi given that Hi-1 is true, i = 2,…,q. Each one of these test statistics involves two parameters only, p.i-1 = p1 + … + pi-1 and pi. We also use the exact decomposition property to test equality of the “direction parameters” for q sample points from the exponential distribution on the Lorentz cone. We give a table of critical values for the distribution on the three-dimensional Lorentz cone. Tables of critical values in higher dimensions can easily be computed following the same method as in dimension three.  相似文献   

8.
Let X1,…,Xn be exchangeable normal variables with a common correlation p, and let X(1) > … > X(n) denote their order statistics. The random variable σni=nk+1xi, called the selection differential by geneticists, is of particular interest in genetic selection and related areas. In this paper we give results concerning a conjecture of Tong (1982) on the distribution of this random variable as a function of ρ. The same technique used can be applied to yield more general results for linear combinations of order statistics from elliptical distributions.  相似文献   

9.
A RENEWAL THEOREM IN MULTIDIMENSIONAL TIME   总被引:1,自引:0,他引:1  
Let Yl, Y2,… be i.i.d., positive, integer-valued random variables with means, μ. Let the sequences {Yij, j= 1,2,…}, i= 1,…, r be independent copies of {Y1, Y2,…}. For n={n1,…, nr.}, n1≥1, let Sn=S?n1k1=1= 1 …S?nrkr=1 Yik1… Yrkr. We show that S?Nk=1S?k1=1…S?nr=1 P[[Sn= k] ? [μ-r N logr-1 (N)/(r-1)!] as N →∞.  相似文献   

10.
Let X1,X2,… be independent and identically distributed nonnegative random variables with mean μ, and let Sn = X1 + … + Xn. For each λ > 0 and each n ≥ 1, let An be the interval [λnY, ∞), where γ > 1 is a constant. The number of times that Sn is in An is denoted by N. As λ tends to zero, the asymtotic behavior of N is studied. Specifically under suitable conditions, the expectation of N is shown to be (μλ?1)β + o(λ?β/2 where β = 1/(γ-1) and the variance of N is shown to be (μλ?1)β(βμ1)2σ2 + o(λ) where σ2 is the variance of Xn.  相似文献   

11.
Let X1, X2,…,Xn be independent, indentically distributed random variables with density f(x,θ) with respect to a σ-finite measure μ. Let R be a measurable set in the sample space X. The value of X is observable if X ? (X?R) and not otherwise. The number J of observable X’s is binomial, N, Q, Q = 1?P(X ? R). On the basis of J observations, it is desired to estimate N and θ. Estimators considered are conditional and unconditional maximum likelihood and modified maximum likelihood using a prior weight function to modify the likelihood before maximizing. Asymptotic expansions are developed for the [Ncirc]’s of the form [Ncirc] = N + α√N + β + op(1), where α and β are random variables. All estimators have the same α, which has mean 0, variance σ2 (a function of θ) and is asymptotically normal. Hence all are asymptotically equivalent by the usual limit distributional theory. The β’s differ and Eβ can be considered an “asymptotic bias”. Formulas are developed to compare the asymptotic biases of the various estimators. For a scale parameter family of absolutely continuous distributions with X = (0,∞) and R = (T,∞), special formuli are developed and a best estimator is found.  相似文献   

12.
Let X be a normally distributed p-dimensional column vector with mean μ and positive definite covariance matrix σ. and let X α, α = 1,…, N, be a random sample of size N from this distribution. Partition X as ( X 1, X (2)', X '(3))', where X1 is one-dimension, X(2) is p2- dimensional, and so 1 + p1 + p2 = p. Let ρ1 and ρ be the multiple correlation coefficients of X1 with X(2) and with ( X '(2), X '(3))', respectively. Write ρ2/2 = ρ2 - ρ2/1. We shall cosider the following two problems  相似文献   

13.
We consider the problem of robustness in hierarchical Bayes models. Let X = (X1,X2, … ,Xp)τ be a random vector, the X1 being independently distributed as N(θ12) random variables (σ2 known), while the θ1 are thought to be exchangeable, modelled as i.i.d, N(μ,τ2). The hyperparameter µ is given a noninformative prior distribution π(μ) = 1 and τ2 is assumed to be independent of µ having a distribution g(τ2) lying in a certain class of distributions g. For several g's, including e-contaminations classes and density ratio classes we determine the range of the posterior mean of θ1 as g ranges over g.  相似文献   

14.
Let X =(x)ij=(111, …, X,)T, i = l, …n, be an n X random matrix having multivariate symmetrical distributions with parameters μ, Σ. The p-variate normal with mean μ and covariance matrix is a member of this family. Let be the squared multiple correlation coefficient between the first and the succeeding p1 components, and let p2 = + be the squared multiple correlation coefficient between the first and the remaining p1 + p2 =p – 1 components of the p-variate normal vector. We shall consider here three testing problems for multivariate symmetrical distributions. They are (A) to test p2 =0 against; (B) to test against =0, 0; (C) to test against p2 =0, We have shown here that for problem (A) the uniformly most powerful invariant (UMPI) and locally minimax test for the multivariate normal is UMPI and is locally minimax as p2 0 for multivariate symmetrical distributions. For problem (B) the UMPI and locally minimax test is UMPI and locally minimax as for multivariate symmetrical distributions. For problem (C) the locally best invariant (LBI) and locally minimax test for the multivariate normal is also LBI and is locally minimax as for multivariate symmetrical distributions.  相似文献   

15.
Let X1, …, Xn be independent random variables with XiEWG(α, β, λi, pi), i = 1, …, n, and Y1, …, Yn be another set of independent random variables with YiEWG(α, β, γi, qi), i = 1, …, n. The results established here are developed in two directions. First, under conditions p1 = ??? = pn = q1 = ??? = qn = p, and based on the majorization and p-larger orders between the vectors of scale parameters, we establish the usual stochastic and reversed hazard rate orders between the series and parallel systems. Next, for the case λ1 = ??? = λn = γ1 = ??? = γn = λ, we obtain some results concerning the reversed hazard rate and hazard rate orders between series and parallel systems based on the weak submajorization between the vectors of (p1, …, pn) and (q1, …, qn). The results established here can be used to find various bounds for some important aging characteristics of these systems, and moreover extend some well-known results in the literature.  相似文献   

16.
Let X1,X2,…,Xm be distributed normally with mean μ and variance σ2 X; Let Y1,Y2,…,Yn be distributed normally with mean μ and variance σ2 Y; let X1,X2,…,Xm,Y1,Y2,…,Yn be jointly independent. There have been several papers written concerning point estimation of μ for this problem, but very little is available in the literature concerning confidence intervals on the common mean μ. In this paper a method is proposed that results in a confidence interval with confidence coefficient essentially equal to a prescribed value 1 - α. The method is evaluated and compnred with other methods through the expected length of the confidence interval.  相似文献   

17.
Let X = (Xj : j = 1,…, n) be n row vectors of dimension p independently and identically distributed multinomial. For each j, Xj is partitioned as Xj = (Xj1, Xj2, Xj3), where pi is the dimension of Xji with p1 = 1,p1+p2+p3 = p. In addition, consider vectors Yji, i = 1,2j = 1,…,ni that are independent and distributed as X1i. We treat here the problem of testing independence between X11 and X13 knowing that X11 and X12 are uncorrected. A locally best invariant test is proposed for this problem.  相似文献   

18.
19.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

20.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号