首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we propose a new class of semi-parametric cure rate models. Specifically, we construct dynamic models for piecewise hazard functions over a finite partition of the time axis. Allowing the size of partition and the levels of baseline hazard to be random, our proposed models provide a great flexibility in controlling the degree of parametricity in the right tail of the survival distribution and the amount of correlations among the log-baseline hazard levels. Several properties of the proposed models are derived, and propriety of the implied posteriors with improper noninformative priors for regression coefficients based on the proposed models is established for the fixed partition of the time axis. In addition, an efficient reversible jump computational algorithm is developed for carrying out posterior computation. A real data set from a melanoma clinical trial is analyzed in detail to further demonstrate the proposed methodology.  相似文献   

2.
In the framework of model-based cluster analysis, finite mixtures of Gaussian components represent an important class of statistical models widely employed for dealing with quantitative variables. Within this class, we propose novel models in which constraints on the component-specific variance matrices allow us to define Gaussian parsimonious clustering models. Specifically, the proposed models are obtained by assuming that the variables can be partitioned into groups resulting to be conditionally independent within components, thus producing component-specific variance matrices with a block diagonal structure. This approach allows us to extend the methods for model-based cluster analysis and to make them more flexible and versatile. In this paper, Gaussian mixture models are studied under the above mentioned assumption. Identifiability conditions are proved and the model parameters are estimated through the maximum likelihood method by using the Expectation-Maximization algorithm. The Bayesian information criterion is proposed for selecting the partition of the variables into conditionally independent groups. The consistency of the use of this criterion is proved under regularity conditions. In order to examine and compare models with different partitions of the set of variables a hierarchical algorithm is suggested. A wide class of parsimonious Gaussian models is also presented by parameterizing the component-variance matrices according to their spectral decomposition. The effectiveness and usefulness of the proposed methodology are illustrated with two examples based on real datasets.  相似文献   

3.
We prove identifiability of parameters for a broad class of random graph mixture models. These models are characterized by a partition of the set of graph nodes into latent (unobservable) groups. The connectivities between nodes are independent random variables when conditioned on the groups of the nodes being connected. In the binary random graph case, in which edges are either present or absent, these models are known as stochastic blockmodels and have been widely used in the social sciences and, more recently, in biology. Their generalizations to weighted random graphs, either in parametric or non-parametric form, are also of interest. Despite these many applications, the parameter identifiability issue for such models has only been touched upon in the literature. We give here a thorough investigation of this problem. Our work also has consequences for parameter estimation. In particular, the estimation procedure proposed by Frank and Harary for binary affiliation models is revisited in this article.  相似文献   

4.
Many recent applications of nonparametric Bayesian inference use random partition models, i.e. probability models for clustering a set of experimental units. We review the popular basic constructions. We then focus on an interesting extension of such models. In many applications covariates are available that could be used to a priori inform the clustering. This leads to random clustering models indexed by covariates, i.e., regression models with the outcome being a partition of the experimental units. We discuss some alternative approaches that have been used in the recent literature to implement such models, with an emphasis on a recently proposed extension of product partition models. Several of the reviewed approaches were not originally intended as covariate-based random partition models, but can be used for such inference.  相似文献   

5.
We demonstrate how to perform direct simulation from the posterior distribution of a class of multiple changepoint models where the number of changepoints is unknown. The class of models assumes independence between the posterior distribution of the parameters associated with segments of data between successive changepoints. This approach is based on the use of recursions, and is related to work on product partition models. The computational complexity of the approach is quadratic in the number of observations, but an approximate version, which introduces negligible error, and whose computational cost is roughly linear in the number of observations, is also possible. Our approach can be useful, for example within an MCMC algorithm, even when the independence assumptions do not hold. We demonstrate our approach on coal-mining disaster data and on well-log data. Our method can cope with a range of models, and exact simulation from the posterior distribution is possible in a matter of minutes.  相似文献   

6.
This paper presents a generalization of the partition of the chi-squared statistic presented in Beh & Davy (1998). For a three-way contingency table with one or two sets of ordered categories, the chi-squared statistic partition is defined using orthogonal polynomials. Using this partition, information about the relationship between the variables can be obtained by identifying important associations in terms of the location (linear), dispersion (quadratic) and higher order components. The paper compares these partitions with log-linear models for ordinal data.  相似文献   

7.
The Darbellay–Vajda partition scheme is a well known method to estimate the information dependency. This estimator belongs to a class of data-dependent partition estimators. We would like to prove that with some simple conditions, the Darbellay–Vajda partition estimator is a strong consistency for the information dependency estimation of a bivariate random vector. This result is an extension of 20 and 21 work which gives some simple conditions to confirm that the Gessaman's partition estimator and the tree-quantization partition estimator, other estimators in the class of data-dependent partition estimators, are strongly consistent.  相似文献   

8.
This work considers probability models for partitions of a set of n elements using a predictive approach, i.e., models that are specified in terms of the conditional probability of either joining an already existing cluster or forming a new one. The inherent structure can be motivated by resorting to hierarchical models of either parametric or nonparametric nature. Parametric examples include the product partition models (PPMs) and the model-based approach of Dasgupta and Raftery (J. Amer. Statist. Assoc. 93 (1998) 294), while nonparametric alternatives include the Dirichlet process, and more generally, the species sampling models (SSMs). Under exchangeability, PPMs and SSMs induce the same type of partition structure. The methods are discussed in the context of outlier detection in normal linear regression models and of (univariate) density estimation.  相似文献   

9.
10.
Multivariate Dispersion Models Generated From Gaussian Copula   总被引:5,自引:0,他引:5  
In this paper a class of multivariate dispersion models generated from the multivariate Gaussian copula is presented. Being a multivariate extension of Jørgensen's (1987a) dispersion models, this class of multivariate models is parametrized by marginal position, dispersion and dependence parameters, producing a large variety of multivariate discrete and continuous models including the multivariate normal as a special case. Properties of the multivariate distributions are investigated, some of which are similar to those of the multivariate normal distribution, which makes these models potentially useful for the analysis of correlated non-normal data in a way analogous to that of multivariate normal data. As an example, we illustrate an application of the models to the regression analysis of longitudinal data, and establish an asymptotic relationship between the likelihood equation and the generalized estimating equation of Liang & Zeger (1986).  相似文献   

11.
Summary.  A common application of multilevel models is to apportion the variance in the response according to the different levels of the data. Whereas partitioning variances is straightforward in models with a continuous response variable with a normal error distribution at each level, the extension of this partitioning to models with binary responses or to proportions or counts is less obvious. We describe methodology due to Goldstein and co-workers for apportioning variance that is attributable to higher levels in multilevel binomial logistic models. This partitioning they referred to as the variance partition coefficient. We consider extending the variance partition coefficient concept to data sets when the response is a proportion and where the binomial assumption may not be appropriate owing to overdispersion in the response variable. Using the literacy data from the 1991 Indian census we estimate simple and complex variance partition coefficients at multiple levels of geography in models with significant overdispersion and thereby establish the relative importance of different geographic levels that influence educational disparities in India.  相似文献   

12.
Covariate informed product partition models incorporate the intuitively appealing notion that individuals or units with similar covariate values a priori have a higher probability of co-clustering than those with dissimilar covariate values. These methods have been shown to perform well if the number of covariates is relatively small. However, as the number of covariates increase, their influence on partition probabilities overwhelm any information the response may provide in clustering and often encourage partitions with either a large number of singleton clusters or one large cluster resulting in poor model fit and poor out-of-sample prediction. This same phenomenon is observed in Bayesian nonparametric regression methods that induce a conditional distribution for the response given covariates through a joint model. In light of this, we propose two methods that calibrate the covariate-dependent partition model by capping the influence that covariates have on partition probabilities. We demonstrate the new methods’ utility using simulation and two publicly available datasets.  相似文献   

13.
Joint modeling of degradation and failure time data   总被引:1,自引:0,他引:1  
This paper surveys some approaches to model the relationship between failure time data and covariate data like internal degradation and external environmental processes. These models which reflect the dependency between system state and system reliability include threshold models and hazard-based models. In particular, we consider the class of degradation–threshold–shock models (DTS models) in which failure is due to the competing causes of degradation and trauma. For this class of reliability models we express the failure time in terms of degradation and covariates. We compute the survival function of the resulting failure time and derive the likelihood function for the joint observation of failure times and degradation data at discrete times. We consider a special class of DTS models where degradation is modeled by a process with stationary independent increments and related to external covariates through a random time scale and extend this model class to repairable items by a marked point process approach. The proposed model class provides a rich conceptual framework for the study of degradation–failure issues.  相似文献   

14.
The class of nature exponential families generated by stable distributions has been introduced in different contexts by several authors. Tweedie (1984) and Jorgensen (1987) studied this class in the context of generalized liner models and exponential dispersion models. Bar-Lev and Enis (1986) introduced this class in the context of the property of reproducibility in natural exponential families and Hougaard (1986) found the distributions in this class to be natural candidates for applications as survival distributions in life tables for heterogeneous populations. In this note, we consider such a class in the context of minimum variance unbiased estimation. For each family in this class, we obtain an explicit expression for the uniformly minimum variance unbiased estimator for the r-th cumlant, the density function, and the reliability function.  相似文献   

15.
In this contribution we aim at improving ordinal variable selection in the context of causal models for credit risk estimation. In this regard, we propose an approach that provides a formal inferential tool to compare the explanatory power of each covariate and, therefore, to select an effective model for classification purposes. Our proposed model is Bayesian nonparametric thus keeps the amount of model specification to a minimum. We consider the case in which information from the covariates is at the ordinal level. A noticeable instance of this regards the situation in which ordinal variables result from rankings of companies that are to be evaluated according to different macro and micro economic aspects, leading to ordinal covariates that correspond to various ratings, that entail different magnitudes of the probability of default. For each given covariate, we suggest to partition the statistical units in as many groups as the number of observed levels of the covariate. We then assume individual defaults to be homogeneous within each group and heterogeneous across groups. Our aim is to compare and, therefore select, the partition structures resulting from the consideration of different explanatory covariates. The metric we choose for variable comparison is the calculation of the posterior probability of each partition. The application of our proposal to a European credit risk database shows that it performs well, leading to a coherent and clear method for variable averaging of the estimated default probabilities.  相似文献   

16.
The paper presents a partition of the Pearson chi-squared statistic for triply ordered three-way contingency tables. The partition invokes orthogonal polynomials and identifies three-way association terms as well as each combination of two-way associations. This partition provides information about the structure of each variable by identifying important bivariate and trivariate associations in terms of location (linear), dispersion (quadratic) and higher order components. The significance of each term in the partition, and each association within each term can also be determined.
The paper compares the chi-squared partition with the log-linear models of Agresti (1994) for multi-way contingency tables with ordinal categories, by generalizing the model proposed by Haberman (1974).  相似文献   

17.
In a multinomial model, the sample space is partitioned into a disjoint union of cells. The partition is usually immutable during sampling of the cell counts. In this paper, we extend the multinomial model to the incomplete multinomial model by relaxing the constant partition assumption to allow the cells to be variable and the counts collected from non-disjoint cells to be modeled in an integrated manner for inference on the common underlying probability. The incomplete multinomial likelihood is parameterized by the complete-cell probabilities from the most refined partition. Its sufficient statistics include the variable-cell formation observed as an indicator matrix and all cell counts. With externally imposed structures on the cell formation process, it reduces to special models including the Bradley–Terry model, the Plackett–Luce model, etc. Since the conventional method, which solves for the zeros of the score functions, is unfruitful, we develop a new approach to establishing a simpler set of estimating equations to obtain the maximum likelihood estimate (MLE), which seeks the simultaneous maximization of all multiplicative components of the likelihood by fitting each component into an inequality. As a consequence, our estimation amounts to solving a system of the equality attainment conditions to the inequalities. The resultant MLE equations are simple and immediately invite a fixed-point iteration algorithm for solution, which is referred to as the weaver algorithm. The weaver algorithm is short and amenable to parallel implementation. We also derive the asymptotic covariance of the MLE, verify main results with simulations, and compare the weaver algorithm with an MM/EM algorithm based on fitting a Plackett–Luce model to a benchmark data set.  相似文献   

18.
Factor models, structural equation models (SEMs) and random-effect models share the common feature that they assume latent or unobserved random variables. Factor models and SEMs allow well developed procedures for a rich class of covariance models with many parameters, while random-effect models allow well developed procedures for non-normal models including heavy-tailed distributions for responses and random effects. In this paper, we show how these two developments can be combined to result in an extremely rich class of models, which can be beneficial to both areas. A new fitting procedures for binary factor models and a robust estimation approach for continuous factor models are proposed.  相似文献   

19.
W-graph refers to a general class of random graph models that can be seen as a random graph limit. It is characterized by both its graphon function and its motif frequencies. In this paper, relying on an existing variational Bayes algorithm for the stochastic block models (SBMs) along with the corresponding weights for model averaging, we derive an estimate of the graphon function as an average of SBMs with increasing number of blocks. In the same framework, we derive the variational posterior frequency of any motif. A simulation study and an illustration on a social network complete our work.  相似文献   

20.
Model-based clustering is a flexible grouping technique based on fitting finite mixture models to data groups. Despite its rapid development in recent years, there is rather limited literature devoted to developing diagnostic tools for obtained clustering solutions. In this paper, a new method through fuzzy variation decomposition is proposed for probabilistic assessing contribution of variables to a detected dataset partition. Correlation between-variable contributions reveals the underlying variable interaction structure. A visualization tool illustrates whether two variables work collaboratively or exclusively in the model. Elimination of negative-effect variables in the partition leads to better classification results. The developed technique is employed on real-life datasets with promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号