首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this paper is to address the optimal design of the step-stress accelerated degradation test (SSADT) issue when the degradation process of a product follows the inverse Gaussian (IG) process. For this design problem, an important task is to construct a link model to connect the degradation magnitudes at different stress levels. In this paper, a proportional degradation rate model is proposed to link the degradation paths of the SSADT with stress levels, in which the average degradation rate is proportional to an exponential function of the stress level. Two optimization problems about the asymptotic variances of the lifetime characteristics' estimators are investigated. The optimal settings including sample size, measurement frequency and the number of measurements for each stress level are determined by minimizing the two objective functions within a given budget constraint. As an example, the sliding metal wear data are used to illustrate the proposed model.  相似文献   

2.
This paper addresses the optimal design problems for constant-stress accelerated degradation test (CSADT) based on gamma processes with fixed effect and random effect. For three optimization criteria, we prove that optimal CSADT plans with multiple stress levels degenerate to two-stress-level test plans only using the minimum and maximum stress levels under model assumptions. Under each optimization criterion, the optimal sample size allocation proportions for the minimum and maximum stress levels are determined theoretically. The effect of the stress level on the objective functions is also discussed. A numerical example and a simulation study are provided to illustrate the obtained results.  相似文献   

3.
Reliability modeling and evaluation for the two-phase Wiener degradation process are studied. For many devices, the degradation rates could possibly increase or decrease in a non smooth manner at some point in time due to the change of degradation mechanism. A two-phase Wiener degradation process with an unobserved change point is used to model the degradation process. And we assume that the change point varies randomly from device to device. Furthermore, we integrate historical data and up-to-date observation data to improve the degradation modeling and evaluation based on Bayesian method. The change point between the two phases was obtained based on the Akaike information criterion (AIC) and the criterion of the residual sum of squares. Finally, a real example of liquid coupling devices (LCDs) and a numeric example are discussed to demonstrate the effectiveness of the proposed method. The results show that the proposed method is effective and efficient.  相似文献   

4.
During the step-stress accelerated degradation test (SSADT) experiment, the operator usually elevates the stress level at a predetermined time-point for all tested products that had not failed. This time-point is determined by the experience of the operator and the test is carried on until the performance degradation value of the product crosses the threshold value. In fact, this mode only works when a lot of products have been used in the experiment. But in the SSADT experiment, the number of products is relatively few, and so the test control to the products should be done more carefully. Considering the differences in products, we think the time-point of elevating stress level varies randomly from product-to-product. We consider a situation in which when the degradation value crosses a pre-specified value, the stress level is elevated. Under the circumstances, the time at which the degradation path crosses the pre-specified value is uncertain, and so we may regard it as a random variable. We discuss multiple-steps step-stress accelerated degradation models based on Wiener and gamma processes, respectively, and we apply the Bayesian Markov chain Monte Carlo (MCMC) method for such analytically intractable models to obtain the maximum likelihood estimates (MLEs) efficiently and present some computational results obtained from our implementation.  相似文献   

5.
Modern highly reliable products usually have complex structure and many functions. This means that they may have two or more performance characteristics. All the performance characteristics can reflect the product's performance degradation over time, and they may be independent or dependent. If the performance characteristics are independent, they can be modelled separately. But if they are not independent, it is very important to find the joint distribution function of the performance characteristics for estimating the reliability of the product as accurately as possible. Here, we suppose that a product has two performance characteristics and the degradation paths of these two performance characteristics can be governed by a Wiener process with a time-scale transformation, and that the dependency of the performance characteristics can be described by a copula function. The parameters of the two performance characteristics and the copula function can be estimated jointly. The model in such a situation is very complicated and analytically intractable and becomes cumbersome from a computational viewpoint. For this reason, the Bayesian Markov chain Monte Carlo method is developed for this problem that allows the maximum-likelihood estimates of the parameters to be determined in an efficient manner. For an illustration of the proposed model, a numerical example about fatigue cracks is presented.  相似文献   

6.
The issue of residual life (RL) estimation plays an important role for products while they are in use, especially for expensive and reliability-critical products. For many products, they may have two or more performance characteristics (PCs). Here, an adaptive method of RL estimation based on bivariate Wiener degradation process with time-scale transformations is presented. It is assumed that a product has two PCs, and that each PC is governed by a Wiener process with a time-scale transformation. The dependency of PCs is characterized by the Frank copula function. Parameters are estimated by using the Bayesian Markov chain Monte Carlo method. Once new degradation information is available, the RL is re-estimated in an adaptive manner. A numerical example about fatigue cracks is given to demonstrate the usefulness and validity of the proposed method.  相似文献   

7.
For some operable products with critical reliability constraints, it is important to estimate accurately their residual lives so that maintenance actions can be arranged suitably and efficiently. In the literature, most publications have dealt with this issue by only considering one-dimensional degradation data. However, this may be not reasonable in situations wherein a product may have two or more performance characteristics (PCs). In such situations, multi-dimensional degradation data should be taken into account. Here, for the target product with multivariate PCs, methods of residual life (RL) estimation are developed. This is done with the assumption that the degradation of PCs over time is governed by a multivariate Wiener process with nonlinear drifts. Both the population-based degradation information and the degradation history of the target product up-to-date are combined to estimate the RL of the product. Specifically, the population-based degradation information is first used to obtain the estimates of the unknown parameters of the model through the EM algorithm. Then, the degradation history of the target product is adopted to update the degradation model, based on which the RL is estimated accordingly. To illustrate the validity and the usefulness of the proposed method, a numerical example about fatigue cracks is finally presented and analysed.  相似文献   

8.
Residual life (RL) estimation plays an important role in prognostics and health management. In operating conditions, components usually experience stresses continuously varying over time, which have an impact on the degradation processes. This paper investigates a Wiener process model to track and predict the RL under time-varying conditions. The item-to-item variation is captured by the drift parameter and the degradation characteristic of the whole population is described by the diffusion parameter. The bootstrap method and Bayesian theorem are employed to estimate and update the distribution parameters of ‘a’ and ‘b’, which are the coefficients of the linear drifting process in the degradation model. Once new degradation information becomes available, the RL distributions considering the future operating condition are derived. The proposed method is tested on Lithium-ion battery devices under three levels of charging/discharging rates. The results are further validated by a simulation method.  相似文献   

9.
This paper presents a step-stress accelerated life test for two stress variables to obtain optimal hold times under a Type-I hybrid censoring scheme. An exponentially distributed life and a cumulative exposure model are assumed. The maximum-likelihood estimates are given, from which the asymptotic variance and the Fisher information matrix are obtained. The optimal test plan is determined for each combination of stress levels by minimizing the asymptotic variance of reliability estimate at a typical operating condition. Finally, simulation results are discussed to illustrate the proposed criteria. Simulation results show that the proposed optimum plan is robust, and the initial estimates have a small effect on optimal values.  相似文献   

10.
Mis-specification analyses of gamma and Wiener degradation processes   总被引:2,自引:0,他引:2  
Degradation models are widely used these days to assess the lifetime information of highly reliable products if there exist some quality characteristics (QC) whose degradation over time can be related to the reliability of the product. In this study, motivated by a laser data, we investigate the mis-specification effect on the prediction of product's MTTF (mean-time-to-failure) when the degradation model is wrongly fitted. More specifically, we derive an expression for the asymptotic distribution of quasi-MLE (QMLE) of the product's MTTF when the true model comes from gamma degradation process, but is wrongly assumed to be Wiener degradation process. The penalty for the model mis-specification can then be addressed sequentially. The result demonstrates that the effect on the accuracy of the product's MTTF prediction strongly depends on the ratio of critical value to the scale parameter of the gamma degradation process. The effects on the precision of the product's MTTF prediction are observed to be serious when the shape and scale parameters of the gamma degradation process are large. We then carry out a simulation study to evaluate the penalty of the model mis-specification, using which we show that the simulation results are quite close to the theoretical ones even when the sample size and termination time are not large. For the reverse mis-specification problem, i.e., when the true degradation is a Wiener process, but is wrongly assumed to be a gamma degradation process, we carry out a Monte Carlo simulation study to examine the effect of the corresponding model mis-specification. The obtained results reveal that the effect of this model mis-specification is negligible.  相似文献   

11.
Accelerated life testing is widely used in product life testing experiments since it provides significant reduction in time and cost of testing. In this paper, assuming that the lifetime of items under use condition follow the two-parameter Pareto distribution of the second kind, partially accelerated life tests based on progressively Type-II censored samples are considered. The likelihood equations of the model parameters and the acceleration factor are reduced to a single nonlinear equation to be solved numerically to obtain the maximum-likelihood estimates (MLEs). Based on normal approximation to the asymptotic distribution of MLEs, the approximate confidence intervals (ACIs) for the parameters are derived. Two bootstrap CIs are also proposed. The classical Bayes estimates cannot be obtained in explicit form, so we propose to apply Markov chain Monte Carlo method to tackle this problem, which allows us to construct the credible interval of the involved parameters. Analysis of a simulated data set has also been presented for illustrative purposes. Finally, a Monte Carlo simulation study is carried out to investigate the precision of the Bayes estimates with MLEs and to compare the performance of different corresponding CIs considered.  相似文献   

12.
Failure Inference From a Marker Process Based on a Bivariate Wiener Model   总被引:1,自引:0,他引:1  
Many models have been proposed that relate failure times and stochastic time-varying covariates. In some of these models, failure occurs when a particular observable marker crosses a threshold level. We are interested in the more difficult, and often more realistic, situation where failure is not related deterministically to an observable marker. In this case, joint models for marker evolution and failure tend to lead to complicated calculations for characteristics such as the marginal distribution of failure time or the joint distribution of failure time and marker value at failure. This paper presents a model based on a bivariate Wiener process in which one component represents the marker and the second, which is latent (unobservable), determines the failure time. In particular, failure occurs when the latent component crosses a threshold level. The model yields reasonably simple expressions for the characteristics mentioned above and is easy to fit to commonly occurring data that involve the marker value at the censoring time for surviving cases and the marker value and failure time for failing cases. Parametric and predictive inference are discussed, as well as model checking. An extension of the model permits the construction of a composite marker from several candidate markers that may be available. The methodology is demonstrated by a simulated example and a case application.  相似文献   

13.
In this paper, step partially accelerated life tests are considered when the lifetime of an item under use condition follows a finite mixture of distributions. The analysis is performed when each of the components follows a general class of distributions, which includes, among others, the Weibull, compound Weibull (or three-parameter Burr type XII), power function, Gompertz and compound Gompertz distributions. Based on type-I censoring, the maximum likelihood estimates (MLEs) of the mixing proportions, scale parameters and acceleration factor are obtained. Special attention is paid to a mixture of two exponential components. Simulation results are obtained to study the precision of MLEs.  相似文献   

14.
The development of models and methods for cure rate estimation has recently burgeoned into an important subfield of survival analysis. Much of the literature focuses on the standard mixture model. Recently, process-based models have been suggested. We focus on several models based on first passage times for Wiener processes. Whitmore and others have studied these models in a variety of contexts. Lee and Whitmore (Stat Sci 21(4):501–513, 2006) give a comprehensive review of a variety of first hitting time models and briefly discuss their potential as cure rate models. In this paper, we study the Wiener process with negative drift as a possible cure rate model but the resulting defective inverse Gaussian model is found to provide a poor fit in some cases. Several possible modifications are then suggested, which improve the defective inverse Gaussian. These modifications include: the inverse Gaussian cure rate mixture model; a mixture of two inverse Gaussian models; incorporation of heterogeneity in the drift parameter; and the addition of a second absorbing barrier to the Wiener process, representing an immunity threshold. This class of process-based models is a useful alternative to the standard model and provides an improved fit compared to the standard model when applied to many of the datasets that we have studied. Implementation of this class of models is facilitated using expectation-maximization (EM) algorithms and variants thereof, including the gradient EM algorithm. Parameter estimates for each of these EM algorithms are given and the proposed models are applied to both real and simulated data, where they perform well.  相似文献   

15.
This paper focusses on computing the Bayesian reliability of components whose performance characteristics (degradation – fatigue and cracks) are observed during a specified period of time. Depending upon the nature of degradation data collected, we fit a monotone increasing or decreasing function for the data. Since the components are supposed to have different lifetimes, the rate of degradation is assumed to be a random variable. At a critical level of degradation, the time to failure distribution is obtained. The exponential and power degradation models are studied and exponential density function is assumed for the random variable representing the rate of degradation. The maximum likelihood estimator and Bayesian estimator of the parameter of exponential density function, predictive distribution, hierarchical Bayes approach and robustness of the posterior mean are presented. The Gibbs sampling algorithm is used to obtain the Bayesian estimates of the parameter. Illustrations are provided for the train wheel degradation data.  相似文献   

16.
This paper gives matrix formilae for the O(n-1 ) cerrecti0n applicable to asymptotically efficient conditional moment tests. These formulae only require expectations of functions involving, at most, second order derivatives of the log-likelihood; unlike those previously providcd by Ferrari and Corddro(1994). The correction is used to assess the reliability of first order asymptotic theory for arbitrary residual-based diagnostics in a class of accelerated failure time models: this correction is always parameter free, depending only on the number of included covariates in the regression design. For all but one of the tests considered, first order theory is found to be extremely unreliable, even in quite large samples, although this may not be widely appreciated by applied workers.  相似文献   

17.
Due to the growing importance in maintenance scheduling, the issue of residual life (RL) estimation for some high reliable products based on degradation data has been studied quite extensively. However, most of the existing work only deals with one-dimensional degradation data, which may not be realistic in some cases. Here, an adaptive method of RL estimation is developed based on two-dimensional degradation data. It is assumed that a product has two performance characteristics (PCs) and that the degradation of each PC over time is governed by a non-stationary gamma degradation process. From a practical consideration, it is further assumed that these two PCs are dependent and that their dependency can be characterized by a copula function. As the likelihood function in such a situation is complicated and computationally quite intensive, a two-stage method is used to estimate the unknown parameters of the model. Once new degradation information of the product being monitored becomes available, random effects are first updated by using the Bayesian method. Following that, the RL at current time is estimated accordingly. As the degradation data information accumulates, the RL can be re-estimated in an adaptive manner. Finally, a numerical example about fatigue cracks is presented in order to illustrate the proposed model and the developed inferential method.  相似文献   

18.
Step-stress accelerated degradation test (SSADT) plays an important role in assessing the lifetime distribution of highly reliable products under normal operating conditions when there are not enough test units available for testing purposes. Recently, the optimal SSADT plans are presented based on an underlying assumption that there is only one performance characteristic. However, many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. At the same time, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and nonnegative increments properties. Therefore, it is of great interest to design an efficient SSADT plan for the products with multiple performance characteristics based on gamma processes. In this work, we first introduce reliability model of the degradation products with two performance characteristics based on gamma processes, and then present the corresponding SSADT model. Next, under the constraint of total experimental cost, the optimal settings such as sample size, measurement times, and measurement frequency are obtained by minimizing the asymptotic variance of the estimated 100 qth percentile of the product’s lifetime distribution. Finally, a numerical example is given to illustrate the proposed procedure.  相似文献   

19.
This article conducts a Bayesian analysis for bivariate degradation models based on the inverse Gaussian (IG) process. Assume that a product has two quality characteristics (QCs) and each of the QCs is governed by an IG process. The dependence of the QCs is described by a copula function. A bivariate simple IG process model and three bivariate IG process models with random effects are investigated by using Bayesian method. In addition, a simulation example is given to illustrate the effectiveness of the proposed methods. Finally, an example about heavy machine tools is presented to validate the proposed models.  相似文献   

20.
ABSTRACT

The score test and the GOF test for the inverse Gaussian distribution, in particular the latter, are known to have large size distortion and hence unreliable power when referring to the asymptotic critical values. We show in this paper that with the appropriately bootstrapped critical values, these tests become second-order accurate, with size distortion being essentially eliminated and power more reliable. Two major generalizations of the score test are made: one is to allow the data to be right-censored, and the other is to allow the existence of covariate effects. A data mapping method is introduced for the bootstrap to be able to produce censored data that are conformable with the null model. Monte Carlo results clearly favour the proposed bootstrap tests. Real data illustrations are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号