首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Negative binomial regression (NBR) and Poisson regression (PR) applications have become very popular in the analysis of count data in recent years. However, if there is a high degree of relationship between the independent variables, the problem of multicollinearity arises in these models. We introduce new two-parameter estimators (TPEs) for the NBR and the PR models by unifying the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods. 2007;36:2707–2725]. These new estimators are general estimators which include maximum likelihood (ML) estimator, ridge estimator (RE), Liu estimator (LE) and contraction estimator (CE) as special cases. Furthermore, biasing parameters of these estimators are given and a Monte Carlo simulation is done to evaluate the performance of these estimators using mean square error (MSE) criterion. The benefits of the new TPEs are also illustrated in an empirical application. The results show that the new proposed TPEs for the NBR and the PR models are better than the ML estimator, the RE and the LE.  相似文献   

2.
In this study, the performance of the estimators proposed in the presence of multicollinearity in the linear regression model with heteroscedastic or correlated or both error terms is investigated under the matrix mean square error criterion. Structures of the autocorrelated error terms are given and a Monte Carlo simulation study is conducted to examine the relative efficiency of the estimators against each other.  相似文献   

3.
The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.  相似文献   

4.
Abstract

In this paper, we consider the preliminary test approach to the estimation of the regression parameter in a multiple regression model under multicollinearity situation. The preliminary test almost unbiased two-parameter estimators based on the Wald, the Likelihood ratio, and the Lagrangian multiplier tests are given, when it is suspected that the regression parameter may be restricted to a subspace and the regression error is distributed with multivariate Student’s t errors. The bias and quadratic risk of the proposed estimators are derived and compared. Furthermore, a Monte Carlo simulation is provided to illustrate some of the theoretical results.  相似文献   

5.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

6.
Under some nonstochastic linear restrictions based on either additional information or prior knowledge in a semiparametric regression model, a family of feasible generalized robust estimators for the regression parameter is proposed. The least trimmed squares (LTS) method proposed by Rousseeuw as a highly robust regression estimator is a statistical technique for fitting a regression model based on the subset of h observations (out of n) whose least-square fit possesses the smallest sum of squared residuals. The coverage h may be set between n/2 and n. The LTS estimator involves computing the hyperplane that minimizes the sum of the smallest h squared residuals. For practical purpose, it is assumed that the covariance matrix of the error term is unknown and thus feasible estimators are replaced. Then, we develop an algorithm for the LTS estimator based on feasible methods. Through the Monte Carlo simulation studies and a real data example, performance of the feasible type of robust estimators is compared with the classical ones in restricted semiparametric regression models.  相似文献   

7.
Independence of error terms in a linear regression model, often not established. So a linear regression model with correlated error terms appears in many applications. According to the earlier studies, this kind of error terms, basically can affect the robustness of the linear regression model analysis. It is also shown that the robustness of the parameters estimators of a linear regression model can stay using the M-estimator. But considering that, it acquires this feature as the result of establishment of its efficiency. Whereas, it has been shown that the minimum Matusita distance estimators, has both features robustness and efficiency at the same time. On the other hand, because the Cochrane and Orcutt adjusted least squares estimators are not affected by the dependence of the error terms, so they are efficient estimators. Here we are using of a non-parametric kernel density estimation method, to give a new method of obtaining the minimum Matusita distance estimators for the linear regression model with correlated error terms in the presence of outliers. Also, simulation and real data study both are done for the introduced estimation method. In each case, the proposed method represents lower biases and mean squared errors than the other two methods.KEYWORDS: Robust estimation method, minimum Matusita distance estimation method, non-parametric kernel density estimation method, correlated error terms, outliers  相似文献   

8.
In this paper, the preliminary test approach to the estimation of the linear regression model with student's t errors is considered. The preliminary test almost unbiased two-parameter estimator is proposed, when it is suspected that the regression parameter may be restricted to a constraint. The quadratic biases and quadratic risks of the proposed estimators are derived and compared under both null and alternative hypotheses. The conditions of superiority of the proposed estimators for departure parameter and biasing parameters k and d are derived, respectively. Furthermore, a real data example and a Monte Carlo simulation study are provided to illustrate some of the theoretical results.  相似文献   

9.
In this article, we introduce two almost unbiased estimators for the vector of unknown parameters in a linear regression model when additional linear restrictions on the parameter vector are assumed to hold. Superiority of the two estimators under the mean squared error matrix (MSEM) is discussed. Furthermore, a numerical example and simulation study are given to illustrate some of the theoretical results.  相似文献   

10.
Laplace approximations for the Pitman estimators of location or scale parameters, including terms O(n?1), are obtained. The resulting expressions involve the maximum-likelihood estimate and the derivatives of the log-likelihood function up to order 3. The results can be used to refine the approximations for the optimal compromise estimators for location parameters considered by Easton (1991). Some applications and Monte Carlo simulations are discussed.  相似文献   

11.
It is common for linear regression models that the error variances are not the same for all observations and there are some high leverage data points. In such situations, the available literature advocates the use of heteroscedasticity consistent covariance matrix estimators (HCCME) for the testing of regression coefficients. Primarily, such estimators are based on the residuals derived from the ordinary least squares (OLS) estimator that itself can be seriously inefficient in the presence of heteroscedasticity. To get efficient estimation, many efficient estimators, namely the adaptive estimators are available but their performance has not been evaluated yet when the problem of heteroscedasticity is accompanied with the presence of high leverage data. In this article, the presence of high leverage data is taken into account to evaluate the performance of the adaptive estimator in terms of efficiency. Furthermore, our numerical work also evaluates the performance of the robust standard errors based on this efficient estimator in terms of interval estimation and null rejection rate (NRR).  相似文献   

12.
In this article, we introduce a new class of estimators called the sK type principal components estimators to combat multicollinearity, which include the principal components regression (PCR) estimator, the rk estimator and the sK estimator as special cases. Necessary and sufficient conditions for the superiority of the new estimator over the PCR estimator, the rk estimator and the sK estimator are derived in the sense of the mean squared error matrix criterion. A Monte Carlo simulation study and a numerical example are given to illustrate the performance of the proposed estimator.  相似文献   

13.
In this paper we consider the risk performances of some estimators for both location and scale parameters in a linear regression model under Inagaki’s loss function We prove that the pre-test estimator for location parameter is dominated by the Stein-rule estimator under Inagaki’s loss function when the distribution of error terms is expressed by the scale mixture of normal distribution and the variance of error terms is unknown.. It is an extension of the results in Nagata (1983) to our situation Also we perform numerical calculations to draw the shapes of the risks.  相似文献   

14.
This paper investigates a biased regression approach to the preliminary estimation of the Box-Jenkins transfer function weights. Using statistical simulation to generate time series, 14 estimators (various OLS, ridge and principal components estimators) are compared in terms of MSE and standard error of the weight estimators. The estimators are investigated for different levels of multicollinearity, signal-to-noise ratio, number of independent variables, length of time series and number of lags included in the estimation. The results show that the ridge estimators nearly always give lower MSE than the OLS estimator, and in the computationally difficult cases give much lower MSE than the OLS estimator. The principal components estimators can give lower MSE than the OLS, but also higher values. All biased estimators nearly always give much lower estimated standard error than OLS when estimating the weights.  相似文献   

15.
ABSTRACT

The paper deals with Bayes estimation of the exponentiated Weibull shape parameters under linex loss function when independent non-informative type of priors are available for the parameters. Generalized maximum likelihood estimators have also been obtained. Performances of the proposed Bayes estimator, generalized maximum likelihood estimators, posterior mean (i.e., Bayes estimator under squared error loss function) and maximum likelihood estimators have been studied on the basis of their risks under linex loss function. The comparison is based on a simulation study because the expressions for risk functions of these estimators cannot be obtained in nice closed forms.  相似文献   

16.
The unbiased estimator of a population variance σ2, S 2 has traditionally been overemphasized, regardless of sample size. In this paper, alternative estimators of population variance are developed. These estimators are biased and have the minimum possible mean-squared error [and we define them as the “minimum mean-squared error biased estimators” (MBBE)]. The comparative merit of these estimators over the unbiased estimator is explored using relative efficiency (RE) (a ratio of mean-squared error values). It is found that, across all population distributions investigated, the RE of the MBBE is much higher for small samples and progressively diminishes to 1 with increasing sample size. The paper gives two applications involving the normal and exponential distributions.  相似文献   

17.
In this paper, we introduce two kinds of new restricted estimators called restricted modified Liu estimator and restricted modified ridge estimator based on prior information for the vector of parameters in a linear regression model with linear restrictions. Furthermore, the performance of the proposed estimators in mean squares error matrix sense is derived and compared. Finally, a numerical example and a Monte Carlo simulation are given to illustrate some of the theoretical results.  相似文献   

18.
In this paper, the notion of the general linear estimator and its modified version are introduced using the singular value decomposition theorem in the linear regression model y=X β+e to improve some classical linear estimators. The optimal selections of the biasing parameters involved are theoretically given under the prediction error sum of squares criterion. A numerical example and a simulation study are finally conducted to illustrate the superiority of the proposed estimators.  相似文献   

19.
We consider two consistent estimators for the parameters of the linear predictor in the Poisson regression model, where the covariate is measured with errors. The measurement errors are assumed to be normally distributed with known error variance σ u 2 . The SQS estimator, based on a conditional mean-variance model, takes the distribution of the latent covariate into account, and this is here assumed to be a normal distribution. The CS estimator, based on a corrected score function, does not use the distribution of the latent covariate. Nevertheless, for small σ u 2 , both estimators have identical asymptotic covariance matrices up to the order of σ u 2 . We also compare the consistent estimators to the naive estimator, which is based on replacing the latent covariate with its (erroneously) measured counterpart. The naive estimator is biased, but has a smaller covariance matrix than the consistent estimators (at least up to the order of σ u 2 ).  相似文献   

20.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号