首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We extend four tests common in classical regression – Wald, score, likelihood ratio and F tests – to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.  相似文献   

2.
We propose a method for estimating parameters in generalized linear models with missing covariates and a non-ignorable missing data mechanism. We use a multinomial model for the missing data indicators and propose a joint distribution for them which can be written as a sequence of one-dimensional conditional distributions, with each one-dimensional conditional distribution consisting of a logistic regression. We allow the covariates to be either categorical or continuous. The joint covariate distribution is also modelled via a sequence of one-dimensional conditional distributions, and the response variable is assumed to be completely observed. We derive the E- and M-steps of the EM algorithm with non-ignorable missing covariate data. For categorical covariates, we derive a closed form expression for the E- and M-steps of the EM algorithm for obtaining the maximum likelihood estimates (MLEs). For continuous covariates, we use a Monte Carlo version of the EM algorithm to obtain the MLEs via the Gibbs sampler. Computational techniques for Gibbs sampling are proposed and implemented. The parametric form of the assumed missing data mechanism itself is not `testable' from the data, and thus the non-ignorable modelling considered here can be viewed as a sensitivity analysis concerning a more complicated model. Therefore, although a model may have `passed' the tests for a certain missing data mechanism, this does not mean that we have captured, even approximately, the correct missing data mechanism. Hence, model checking for the missing data mechanism and sensitivity analyses play an important role in this problem and are discussed in detail. Several simulations are given to demonstrate the methodology. In addition, a real data set from a melanoma cancer clinical trial is presented to illustrate the methods proposed.  相似文献   

3.
We develop Bayesian models for density regression with emphasis on discrete outcomes. The problem of density regression is approached by considering methods for multivariate density estimation of mixed scale variables, and obtaining conditional densities from the multivariate ones. The approach to multivariate mixed scale outcome density estimation that we describe represents discrete variables, either responses or covariates, as discretised versions of continuous latent variables. We present and compare several models for obtaining these thresholds in the challenging context of count data analysis where the response may be over‐ and/or under‐dispersed in some of the regions of the covariate space. We utilise a nonparametric mixture of multivariate Gaussians to model the directly observed and the latent continuous variables. The paper presents a Markov chain Monte Carlo algorithm for posterior sampling, sufficient conditions for weak consistency, and illustrations on density, mean and quantile regression utilising simulated and real datasets.  相似文献   

4.
The modelling of discrete such as binary time series, unlike the continuous time series, is not easy. This is due to the fact that there is no unique way to model the correlation structure of the repeated binary data. Some models may also provide a complicated correlation structure with narrow ranges for the correlations. In this paper, we consider a nonlinear dynamic binary time series model that provides a correlation structure which is easy to interpret and the correlations under this model satisfy the full?1 to 1 range. For the estimation of the parameters of this nonlinear model, we use a conditional generalized quasilikelihood (CGQL) approach which provides the same estimates as those of the well-known maximum likelihood approach. Furthermore, we consider a competitive linear dynamic binary time series model and examine the performance of the CGQL approach through a simulation study in estimating the parameters of this linear model. The model mis-specification effects on estimation as well as forecasting are also examined through simulations.  相似文献   

5.
分位数回归技术综述   总被引:16,自引:0,他引:16  
普通最小二乘回归建立了在自变量X=x下因变量Y的条件均值与X的关系的线性模型。而分位数回归(Quantile Regression)则利用自变量X和因变量y的条件分位数进行建模。与普通的均值回归相比,它能充分反映自变量X对于因变量y的分布的位置、刻度和形状的影响,有着十分广泛的应用,尤其是对于一些非常关注尾部特征的情况。文章介绍了分位数回归的概念以及分位数回归的估计、检验和拟合优度,回顾了分位数回归的发展过程以及其在一些经济研究领域中的应用,最后做了总结。  相似文献   

6.
Investigators often gather longitudinal data to assess changes in responses over time within subjects and to relate these changes to within‐subject changes in predictors. Missing data are common in such studies and predictors can be correlated with subject‐specific effects. Maximum likelihood methods for generalized linear mixed models provide consistent estimates when the data are ‘missing at random’ (MAR) but can produce inconsistent estimates in settings where the random effects are correlated with one of the predictors. On the other hand, conditional maximum likelihood methods (and closely related maximum likelihood methods that partition covariates into between‐ and within‐cluster components) provide consistent estimation when random effects are correlated with predictors but can produce inconsistent covariate effect estimates when data are MAR. Using theory, simulation studies, and fits to example data this paper shows that decomposition methods using complete covariate information produce consistent estimates. In some practical cases these methods, that ostensibly require complete covariate information, actually only involve the observed covariates. These results offer an easy‐to‐use approach to simultaneously protect against bias from both cluster‐level confounding and MAR missingness in assessments of change.  相似文献   

7.
We propose a profile conditional likelihood approach to handle missing covariates in the general semiparametric transformation regression model. The method estimates the marginal survival function by the Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent and asymptotically normally distributed estimator of the regression parameter when censoring is independent of the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with complete-case analysis, the proposed estimator can be more efficient when the missing data are missing completely at random and can correct bias when the missing data are missing at random. The potential application of the proposed method to the generalized probit model with missing continuous covariates is also outlined.  相似文献   

8.
The study of a linear regression model with an interval-censored covariate, which was motivated by an acquired immunodeficiency syndrome (AIDS) clinical trial, was first proposed by Gómez et al. They developed a likelihood approach, together with a two-step conditional algorithm, to estimate the regression coefficients in the model. However, their method is inapplicable when the interval-censored covariate is continuous. In this article, we propose a novel and fast method to treat the continuous interval-censored covariate. By using logspline density estimation, we impute the interval-censored covariate with a conditional expectation. Then, the ordinary least-squares method is applied to the linear regression model with the imputed covariate. To assess the performance of the proposed method, we compare our imputation with the midpoint imputation and the semiparametric hierarchical method via simulations. Furthermore, an application to the AIDS clinical trial is presented.  相似文献   

9.
We propose methods for Bayesian inference for missing covariate data with a novel class of semi-parametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology.  相似文献   

10.
In measurement error problems, two major and consistent estimation methods are the conditional score and the corrected score. They are functional methods that require no parametric assumptions on mismeasured covariates. The conditional score requires that a suitable sufficient statistic for the mismeasured covariate can be found, while the corrected score requires that the object score function can be estimated without bias. These assumptions limit their ranges of applications. The extensively corrected score proposed here is an extension of the corrected score. It yields consistent estimations in many cases when neither the conditional score nor the corrected score is feasible. We demonstrate its constructions in generalized linear models and the Cox proportional hazards model, assess its performances by simulation studies and illustrate its implementations by two real examples.  相似文献   

11.
Estimating equations which are not necessarily likelihood-based score equations are becoming increasingly popular for estimating regression model parameters. This paper is concerned with estimation based on general estimating equations when true covariate data are missing for all the study subjects, but surrogate or mismeasured covariates are available instead. The method is motivated by the covariate measurement error problem in marginal or partly conditional regression of longitudinal data. We propose to base estimation on the expectation of the complete data estimating equation conditioned on available data. The regression parameters and other nuisance parameters are estimated simultaneously by solving the resulting estimating equations. The expected estimating equation (EEE) estimator is equal to the maximum likelihood estimator if the complete data scores are likelihood scores and conditioning is with respect to all the available data. A pseudo-EEE estimator, which requires less computation, is also investigated. Asymptotic distribution theory is derived. Small sample simulations are conducted when the error process is an order 1 autoregressive model. Regression calibration is extended to this setting and compared with the EEE approach. We demonstrate the methods on data from a longitudinal study of the relationship between childhood growth and adult obesity.  相似文献   

12.
In this work, we introduce a class of dynamic models for time series taking values on the unit interval. The proposed model follows a generalized linear model approach where the random component, conditioned on the past information, follows a beta distribution, while the conditional mean specification may include covariates and also an extra additive term given by the iteration of a map that can present chaotic behavior. The resulting model is very flexible and its systematic component can accommodate short‐ and long‐range dependence, periodic behavior, laminar phases, etc. We derive easily verifiable conditions for the stationarity of the proposed model, as well as conditions for the law of large numbers and a Birkhoff‐type theorem to hold. A Monte Carlo simulation study is performed to assess the finite sample behavior of the partial maximum likelihood approach for parameter estimation in the proposed model. Finally, an application to the proportion of stored hydroelectrical energy in Southern Brazil is presented.  相似文献   

13.
In this study, we consider the problem of selecting explanatory variables of fixed effects in linear mixed models under covariate shift, which is when the values of covariates in the model for prediction differ from those in the model for observed data. We construct a variable selection criterion based on the conditional Akaike information introduced by Vaida & Blanchard (2005). We focus especially on covariate shift in small area estimation and demonstrate the usefulness of the proposed criterion. In addition, numerical performance is investigated through simulations, one of which is a design‐based simulation using a real dataset of land prices. The Canadian Journal of Statistics 46: 316–335; 2018 © 2018 Statistical Society of Canada  相似文献   

14.
In this article, a Bayesian approach is proposed for the estimation of log odds ratios and intraclass correlations over a two-way contingency table, including intraclass correlated cells. Required likelihood functions of log odds ratios are obtained, and determination of prior structures is discussed. Hypothesis testing for log odds ratios and intraclass correlations by using the posterior simulations is outlined. Because the proposed approach includes no asymptotic theory, it is useful for the estimation and hypothesis testing of log odds ratios in the presence of certain intraclass correlation patterns. A family health status and limitations data set is analyzed by using the proposed approach in order to figure out the impact of intraclass correlations on the estimates and hypothesis tests of log odds ratios. Although intraclass correlations are small in the data set, we obtain that even small intraclass correlations can significantly affect the estimates and test results, and our approach is useful for the estimation and testing of log odds ratios in the presence of intraclass correlations.  相似文献   

15.
This paper focuses on the analysis of spatially correlated functional data. We propose a parametric model for spatial correlation and the between-curve correlation is modeled by correlating functional principal component scores of the functional data. Additionally, in the sparse observation framework, we propose a novel approach of spatial principal analysis by conditional expectation to explicitly estimate spatial correlations and reconstruct individual curves. Assuming spatial stationarity, empirical spatial correlations are calculated as the ratio of eigenvalues of the smoothed covariance surface Cov\((X_i(s),X_i(t))\) and cross-covariance surface Cov\((X_i(s), X_j(t))\) at locations indexed by i and j. Then a anisotropy Matérn spatial correlation model is fitted to empirical correlations. Finally, principal component scores are estimated to reconstruct the sparsely observed curves. This framework can naturally accommodate arbitrary covariance structures, but there is an enormous reduction in computation if one can assume the separability of temporal and spatial components. We demonstrate the consistency of our estimates and propose hypothesis tests to examine the separability as well as the isotropy effect of spatial correlation. Using simulation studies, we show that these methods have some clear advantages over existing methods of curve reconstruction and estimation of model parameters.  相似文献   

16.
When confronted with multiple covariates and a response variable, analysts sometimes apply a variable‐selection algorithm to the covariate‐response data to identify a subset of covariates potentially associated with the response, and then wish to make inferences about parameters in a model for the marginal association between the selected covariates and the response. If an independent data set were available, the parameters of interest could be estimated by using standard inference methods to fit the postulated marginal model to the independent data set. However, when applied to the same data set used by the variable selector, standard (“naive”) methods can lead to distorted inferences. The authors develop testing and interval estimation methods for parameters reflecting the marginal association between the selected covariates and response variable, based on the same data set used for variable selection. They provide theoretical justification for the proposed methods, present results to guide their implementation, and use simulations to assess and compare their performance to a sample‐splitting approach. The methods are illustrated with data from a recent AIDS study. The Canadian Journal of Statistics 37: 625–644; 2009 © 2009 Statistical Society of Canada  相似文献   

17.
In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause-specific hazards. Another recent approach is to directly model the cumulative incidence by a proportional model (Fine and Gray, J Am Stat Assoc 94:496–509, 1999), and then obtain direct estimates of how covariates influences the cumulative incidence curve. We consider a simple and flexible class of regression models that is easy to fit and contains the Fine–Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy to use. The test is constructive in the sense that it shows exactly where non-proportionality is present. We illustrate our methods to a bone marrow transplant data from the Center for International Blood and Marrow Transplant Research (CIBMTR). Through this data example we demonstrate the use of the flexible regression models to analyze competing risks data when non-proportionality is present in the data.  相似文献   

18.
The Cox‐Aalen model, obtained by replacing the baseline hazard function in the well‐known Cox model with a covariate‐dependent Aalen model, allows for both fixed and dynamic covariate effects. In this paper, we examine maximum likelihood estimation for a Cox‐Aalen model based on interval‐censored failure times with fixed covariates. The resulting estimator globally converges to the truth slower than the parametric rate, but its finite‐dimensional component is asymptotically efficient. Numerical studies show that estimation via a constrained Newton method performs well in terms of both finite sample properties and processing time for moderate‐to‐large samples with few covariates. We conclude with an application of the proposed methods to assess risk factors for disease progression in psoriatic arthritis.  相似文献   

19.
Partially linear models are extensions of linear models that include a nonparametric function of some covariate allowing an adequate and more flexible handling of explanatory variables than in linear models. The difference-based estimation in partially linear models is an approach designed to estimate parametric component by using the ordinary least squares estimator after removing the nonparametric component from the model by differencing. However, it is known that least squares estimates do not provide useful information for the majority of data when the error distribution is not normal, particularly when the errors are heavy-tailed and when outliers are present in the dataset. This paper aims to find an outlier-resistant fit that represents the information in the majority of the data by robustly estimating the parametric and the nonparametric components of the partially linear model. Simulations and a real data example are used to illustrate the feasibility of the proposed methodology and to compare it with the classical difference-based estimator when outliers exist.  相似文献   

20.
The negative binomial (NB) is frequently used to model overdispersed Poisson count data. To study the effect of a continuous covariate of interest in an NB model, a flexible procedure is used to model the covariate effect by fixed-knot cubic basis-splines or B-splines with a second-order difference penalty on the adjacent B-spline coefficients to avoid undersmoothing. A penalized likelihood is used to estimate parameters of the model. A penalized likelihood ratio test statistic is constructed for the null hypothesis of the linearity of the continuous covariate effect. When the number of knots is fixed, its limiting null distribution is the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. The smoothing parameter value is determined by setting a specified value equal to the asymptotic expectation of the test statistic under the null hypothesis. The power performance of the proposed test is studied with simulation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号