首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Yan 《Statistics》2015,49(5):978-988
Empirical likelihood inference for generalized linear models with fixed and adaptive designs is considered. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter and the resulting estimator is shown to be asymptotically normal. Some simulations are conducted to illustrate the proposed method.  相似文献   

2.
In this paper, we propose an empirical likelihood based diagnostic technique for heteroscedasticity in the semiparametric varying-coefficient partially linear errors-in-variables models. Under mild conditions, a nonparametric version of Wilk’s theorem is derived. Simulation results reveal that our test performs well in both size and power.  相似文献   

3.
In this article, we consider a generalized linear partially varying-coefficient model for longitudinal data analysis. A local quasi-likelihood method is proposed to estimate the constant-coefficient and varying-coefficient functions simultaneously based on the local polynomial kernel regression. The corresponding standard error estimates are derived. Large sample properties are investigated. The proposed methodologies are demonstrated by extensive simulation studies and a real example.  相似文献   

4.
In this paper,we propose a class of general partially linear varying-coefficient transformation models for ranking data. In the models, the functional coefficients are viewed as nuisance parameters and approximated by B-spline smoothing approximation technique. The B-spline coefficients and regression parameters are estimated by rank-based maximum marginal likelihood method. The three-stage Monte Carlo Markov Chain stochastic approximation algorithm based on ranking data is used to compute estimates and the corresponding variances for all the B-spline coefficients and regression parameters. Through three simulation studies and a Hong Kong horse racing data application, the proposed procedure is illustrated to be accurate, stable and practical.  相似文献   

5.
The authors propose a block empirical likelihood procedure to accommodate the within‐group correlation in longitudinal partially linear regression models. This leads them to prove a nonparametric version of the Wilks theorem. In comparison with normal approximations, their method does not require a consistent estimator for the asymptotic covariance matrix, which makes it easier to conduct inference on the parametric component of the model. An application to a longitudinal study on fluctuations of progesterone level in a menstrual cycle is used to illustrate the procedure developed here.  相似文献   

6.
This paper presents the empirical likelihood inferences for a class of varying-coefficient models with error-prone covariates. We focus on the case that the covariance matrix of the measurement errors is unknown and neither repeated measurements nor validation data are available. We propose an instrumental variable-based empirical likelihood inference method and show that the proposed empirical log-likelihood ratio is asymptotically chi-squared. Then, the confidence intervals for the varying-coefficient functions are constructed. Some simulation studies and a real data application are used to assess the finite sample performance of the proposed empirical likelihood procedure.  相似文献   

7.
We study bandwidth selection for a class of semi-parametric models. The proper choice of optimal bandwidth minimizes the prediction errors of the model. We provide detailed derivation of our procedure and the corresponding computation algorithms. Our proposed method simplifies the computation of the cross-validation criteria and facilitates more complicated inference and analysis in practice. A data set from Wisconsin Diabetes Registry has been analysed as an illustration.  相似文献   

8.
Varying-coefficient partially linear models provide a useful tools for modeling of covariate effects on the response variable in regression. One key question in varying-coefficient partially linear models is the choice of model structure, that is, how to decide which covariates have linear effect and which have non linear effect. In this article, we propose a profile method for identifying the covariates with linear effect or non linear effect. Our proposed method is a penalized regression approach based on group minimax concave penalty. Under suitable conditions, we show that the proposed method can correctly determine which covariates have a linear effect and which do not with high probability. The convergence rate of the linear estimator is established as well as the asymptotical normality. The performance of the proposed method is evaluated through a simulation study which supports our theoretical results.  相似文献   

9.
This paper develops a robust estimation procedure for the varying-coefficient partially linear model via local rank technique. The new procedure provides a highly efficient and robust alternative to the local linear least-squares method. In other words, the proposed method is highly efficient across a wide class of non-normal error distributions and it only loses a small amount of efficiency for normal error. Moreover, a test for the hypothesis of constancy for the nonparametric component is proposed. The test statistic is simple and thus the test procedure can be easily implemented. We conduct Monte Carlo simulation to examine the finite sample performance of the proposed procedures and apply them to analyse the environment data set. Both the theoretical and the numerical results demonstrate that the performance of our approach is at least comparable to those existing competitors.  相似文献   

10.
We consider local linear estimation of varying-coefficient models in which the data are observed with multiplicative distortion which depends on an observed confounding variable. At first, each distortion function is estimated by non parametrically regressing the absolute value of contaminated variable on the confounder. Secondly, the coefficient functions are estimated by the local least square method on the basis of the predictors of latent variables, which are obtained in terms of the estimated distorting functions. We also establish the asymptotic normality of our proposed estimators and discuss the inference about the distortion function. Simulation studies are carried out to assess the finite sample performance of the proposed estimators and a real dataset of Pima Indians diabetes is analyzed for illustration.  相似文献   

11.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

12.
Empirical likelihood for generalized linear models with missing responses   总被引:1,自引:0,他引:1  
The paper uses the empirical likelihood method to study the construction of confidence intervals and regions for regression coefficients and response mean in generalized linear models with missing response. By using the inverse selection probability weighted imputation technique, the proposed empirical likelihood ratios are asymptotically chi-squared. Our approach is to directly calibrate the empirical likelihood ratio, which is called as a bias-correction method. Also, a class of estimators for the parameters of interest is constructed, and the asymptotic distributions of the proposed estimators are obtained. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is used for illustrating our methods.  相似文献   

13.
Variance estimation is a fundamental yet important problem in statistical modelling. In this paper, we propose jackknife empirical likelihood (JEL) methods for the error variance in a linear regression model. We prove that the JEL ratio converges to the standard chi-squared distribution. The asymptotic chi-squared properties for the adjusted JEL and extended JEL estimators are also established. Extensive simulation studies to compare the new JEL methods with the standard method in terms of coverage probability and interval length are conducted, and the simulation results show that our proposed JEL methods perform better than the standard method. We also illustrate the proposed methods using two real data sets.  相似文献   

14.
Abstract

This paper is concerned with model averaging procedure for varying-coefficient partially linear models. We proposed a jackknife model averaging method that involves minimizing a leave-one-out cross-validation criterion, and developed a computational shortcut to optimize the cross-validation criterion for weight choice. The resulting model average estimator is shown to be asymptotically optimal in terms of achieving the smallest possible squared error. The simulation studies have provided evidence of the superiority of the proposed procedures. Our approach is further applied to a real data.  相似文献   

15.
In this paper, we focus on the empirical likelihood (EL) inference for high-dimensional partially linear model with martingale difference errors. An empirical log-likelihood ratio statistic of unknown parameter is constructed and is shown to have asymptotically normality distribution under some suitable conditions. This result is different from those derived before. Furthermore, an empirical log-likelihood ratio for a linear combination of unknown parameter is also proposed and its asymptotic distribution is chi-squared. Based on these results, the confidence regions both for unknown parameter and a linear combination of parameter can be obtained. A simulation study is carried out to show that our proposed approach performs better than normal approximation-based method.  相似文献   

16.
In this paper, we consider the statistical inference for the varying-coefficient partially nonlinear model with additive measurement errors in the nonparametric part. The local bias-corrected profile nonlinear least-squares estimation procedure for parameter in nonlinear function and nonparametric function is proposed. Then, the asymptotic normality properties of the resulting estimators are established. With the empirical likelihood method, a local bias-corrected empirical log-likelihood ratio statistic for the unknown parameter, and a corrected and residual adjusted empirical log-likelihood ratio for the nonparametric component are constructed. It is shown that the resulting statistics are asymptotically chi-square distribution under some suitable conditions. Some simulations are conducted to evaluate the performance of the proposed methods. The results indicate that the empirical likelihood method is superior to the profile nonlinear least-squares method in terms of the confidence regions of parameter and point-wise confidence intervals of nonparametric function.  相似文献   

17.
Xing-Cai Zhou 《Statistics》2013,47(3):668-684
In this paper, empirical likelihood inference in mixture of semiparametric varying-coefficient models for longitudinal data with non-ignorable dropout is investigated. We estimate the non-parametric function based on the estimating equations and the local linear profile-kernel method. An empirical log-likelihood ratio statistic for parametric components is proposed to construct confidence regions and is shown to be an asymptotically chi-squared distribution. The non-parametric version of Wilk's theorem is also derived. A simulation study is undertaken to illustrate the finite sample performance of the proposed method.  相似文献   

18.
In this paper, a unified maximum marginal likelihood estimation procedure is proposed for the analysis of right censored data using general partially linear varying-coefficient transformation models (GPLVCTM), which are flexible enough to include many survival models as its special cases. Unknown functional coefficients in the models are approximated by cubic B-spline polynomial. We estimate B-spline coefficients and regression parameters by maximizing marginal likelihood function. One advantage of this procedure is that it is free of both baseline and censoring distribution. Through simulation studies and a real data application (VA data from the Veteran's Administration Lung Cancer Study Clinical Trial), we illustrate that the proposed estimation procedure is accurate, stable and practical.  相似文献   

19.
Xia Chen 《Statistics》2013,47(6):745-757
In this paper, we consider the application of the empirical likelihood method to a partially linear model with measurement errors in the non-parametric part. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter by using the empirical log-likelihood ratio function, and the resulting estimator is shown to be asymptotically normal. Some simulations and an application are conducted to illustrate the proposed method.  相似文献   

20.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号