首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
The authors consider a finite population ρ = {(Yk, xk), k = 1,…,N} conforming to a linear superpopulation model with unknown heteroscedastic errors, the variances of which are values of a smooth enough function of the auxiliary variable X for their nonparametric estimation. They describe a method of the Chambers‐Dunstan type for estimation of the distribution of {Yk, k = 1,…, N} from a sample drawn from without replacement, and determine the asymptotic distribution of its estimation error. They also consider estimation of its mean squared error in particular cases, evaluating both the analytical estimator derived by “plugging‐in” the asymptotic variance, and a bootstrap approach that is also applicable to estimation of parameters other than mean squared error. These proposed methods are compared with some common competitors in simulation studies.  相似文献   

2.
Two-component mixture cure rate model is popular in cure rate data analysis with the proportional hazards and accelerated failure time (AFT) models being the major competitors for modelling the latency component. [Wang, L., Du, P., and Liang, H. (2012), ‘Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components’, Biometrics, 68, 726–735] first proposed a nonparametric mixture cure rate model where the latency component assumes proportional hazards with nonparametric covariate effects in the relative risk. Here we consider a mixture cure rate model where the latency component assumes AFTs with nonparametric covariate effects in the acceleration factor. Besides the more direct physical interpretation than the proportional hazards, our model has an additional scalar parameter which adds more complication to the computational algorithm as well as the asymptotic theory. We develop a penalised EM algorithm for estimation together with confidence intervals derived from the Louis formula. Asymptotic convergence rates of the parameter estimates are established. Simulations and the application to a melanoma study shows the advantages of our new method.  相似文献   

3.
Suppose that a finite population consists of N distinct units. Associated with the ith unit is a polychotomous response vector, d i , and a vector of auxiliary variable x i . The values x i ’s are known for the entire population but d i ’s are known only for the units selected in the sample. The problem is to estimate the finite population proportion vector P. One of the fundamental questions in finite population sampling is how to make use of the complete auxiliary information effectively at the estimation stage. In this article a predictive estimator is proposed which incorporates the auxiliary information at the estimation stage by invoking a superpopulation model. However, the use of such estimators is often criticized since the working superpopulation model may not be correct. To protect the predictive estimator from the possible model failure, a nonparametric regression model is considered in the superpopulation. The asymptotic properties of the proposed estimator are derived and also a bootstrap-based hybrid re-sampling method for estimating the variance of the proposed estimator is developed. Results of a simulation study are reported on the performances of the predictive estimator and its re-sampling-based variance estimator from the model-based viewpoint. Finally, a data survey related to the opinions of 686 individuals on the cause of addiction is used for an empirical study to investigate the performance of the nonparametric predictive estimator from the design-based viewpoint.  相似文献   

4.
We provide a simple result on the H-decomposition of a U-statistics that allows for easy determination of its magnitude when the statistic’s kernel depends on the sample size n. The result provides a direct and convenient method to characterize the asymptotic magnitude of semiparametric and nonparametric estimators or test statistics involving high dimensional sums. We illustrate the use of our result in previously studied estimators/test statistics and in a novel nonparametric R2 test for overall significance of a nonparametric regression model.  相似文献   

5.
G. Aneiros  F. Ferraty  P. Vieu 《Statistics》2015,49(6):1322-1347
The problem of variable selection is considered in high-dimensional partial linear regression under some model allowing for possibly functional variable. The procedure studied is that of nonconcave-penalized least squares. It is shown the existence of a √n/sn-consistent estimator for the vector of pn linear parameters in the model, even when pn tends to ∞ as the sample size n increases (sn denotes the number of influential variables). An oracle property is also obtained for the variable selection method, and the nonparametric rate of convergence is stated for the estimator of the nonlinear functional component of the model. Finally, a simulation study illustrates the finite sample size performance of our procedure.  相似文献   

6.
The large nonparametric model in this note is a statistical model with the family ? of all continuous and strictly increasing distribution functions. In the abundant literature of the subject, there are many proposals for nonparametric estimators that are applicable in the model. Typically the kth order statistic X k:n is taken as a simplest estimator, with k = [nq], or k = [(n + 1)q], or k = [nq] + 1, etc. Often a linear combination of two consecutive order statistics is considered. In more sophisticated constructions, different L-statistics (e.g., Harrel–Davis, Kaigh–Lachenbruch, Bernstein, kernel estimators) are proposed. Asymptotically the estimators do not differ substantially, but if the sample size n is fixed, which is the case of our concern, differences may be serious. A unified treatment of quantile estimators in the large, nonparametric statistical model is developed.  相似文献   

7.
The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data arrive. However, analyses based on the Dirichlet process prior are sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G 0. Most previous applications have either fixed G 0 as a member of a parametric family or treated G 0 in a Bayesian fashion, using parametric prior specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates of G 0. We combine this method with a technique for estimating α, the other Dirichlet process parameter, that is inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where smooth point estimates of G 0 are of intrinsic interest, or where the structure of G 0 cannot be conveniently modeled with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of this approach.  相似文献   

8.
A robust estimator introduced by Beran (1977a, 1977b), which is based on the minimum Hellinger distance between a projection model density and a nonparametric sample density, is studied empirically. An extensive simulation provides an estimate of the small sample distribution and supplies empirical evidence of the estimator performance for a normal location-scale model. While the performance of the minimum Hellinger distance estimator is seen to be competitive with the maximum likelihood estimator at the true model, its robustness to deviations from normality is shown to be competitive in this setting with that obtained from the M-estimator and the Cramér-von Mises minimum distance estimator. Beran also introduced a goodness-of-fit statisticH 2, based on the minimized Hellinger distance between a member of a parametric family of densities and a nonparametric density estimate. We investigate the statistic H (the square root of H 2) as a test for normality when both location and scale are unspecified. Empirically derived critical values are given which do not require extensive tables. The power of the statistic H compares favorably with four other widely used tests for normality.  相似文献   

9.
This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l 1-penalty based wavelet estimator of the nonparametric component and Huber’s M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature.  相似文献   

10.
When process data follow a particular curve in quality control, profile monitoring is suitable and appropriate for assessing process stability. Previous research in profile monitoring focusing on nonlinear parametric (P) modeling, involving both fixed and random-effects, was made under the assumption of an accurate nonlinear model specification. Lately, nonparametric (NP) methods have been used in the profile monitoring context in the absence of an obvious linear P model. This study introduces a novel technique in profile monitoring for any nonlinear and auto-correlated data. Referred to as the nonlinear mixed robust profile monitoring (NMRPM) method, it proposes a semiparametric (SP) approach that combines nonlinear P and NP profile fits for scenarios in which a nonlinear P model is adequate over part of the data but inadequate of the rest. These three methods (P, NP, and NMRPM) account for the auto-correlation within profiles and treats the collection of profiles as a random sample with a common population. During Phase I analysis, a version of Hotelling’s T2 statistic is proposed for each approach to identify abnormal profiles based on the estimated random effects and obtain the corresponding control limits. The performance of the NMRPM method is then evaluated using a real data set. Results reveal that the NMRPM method is robust to model misspecification and performs adequately against a correctly specified nonlinear P model. Control charts with the NMRPM method have excellent capability of detecting changes in Phase I data with control limits that are easily computable.  相似文献   

11.
The robust M-estimators for the partly linear model under stochastic adapted errors are considered. It is shown that the M-estimator of parameter is asymptotically normal and the M-estimator of the nonparametric function achieves the optimal rate of convergence for nonparametric regression. Some known results are improved and generalized. Some simulations and a real data example are conducted to illustrate the proposed method.  相似文献   

12.
In this article, we consider a partially linear single-index model Y = g(Z τθ0) + X τβ0 + ? when the covariate X may be missing at random. We propose weighted estimators for the unknown parametric and nonparametric part by applying weighted estimating equations. We establish normality of the estimators of the parameters and asymptotic expansion for the estimator of the nonparametric part when the selection probabilities are unknown. Simulation studies are also conducted to illustrate the finite sample properties of these estimators.  相似文献   

13.
We propose a Bayesian nonparametric instrumental variable approach under additive separability that allows us to correct for endogeneity bias in regression models where the covariate effects enter with unknown functional form. Bias correction relies on a simultaneous equations specification with flexible modeling of the joint error distribution implemented via a Dirichlet process mixture prior. Both the structural and instrumental variable equation are specified in terms of additive predictors comprising penalized splines for nonlinear effects of continuous covariates. Inference is fully Bayesian, employing efficient Markov chain Monte Carlo simulation techniques. The resulting posterior samples do not only provide us with point estimates, but allow us to construct simultaneous credible bands for the nonparametric effects, including data-driven smoothing parameter selection. In addition, improved robustness properties are achieved due to the flexible error distribution specification. Both these features are challenging in the classical framework, making the Bayesian one advantageous. In simulations, we investigate small sample properties and an investigation of the effect of class size on student performance in Israel provides an illustration of the proposed approach which is implemented in an R package bayesIV. Supplementary materials for this article are available online.  相似文献   

14.
Rates of convergence of Bayesian nonparametric procedures are expressed as the maximum between two rates: one is determined via suitable measures of concentration of the prior around the “true” density f0, and the other is related to the way the mass is spread outside a neighborhood of f0. Here we provide a lower bound for the former in terms of the usual notion of prior concentration and in terms of an alternative definition of prior concentration. Moreover, we determine the latter for two important classes of priors: the infinite–dimensional exponential family, and the Pólya trees.  相似文献   

15.
The mean residual life of a non negative random variable X with a finite mean is defined by M(t) = E[X ? t|X > t] for t ? 0. A popular nonparametric model of aging is new better than used in expectation (NBUE), when M(t) ? M(0) for all t ? 0. The exponential distribution lies at the boundary. There is a large literature on testing exponentiality against NBUE alternatives. However, comparisons of tests have been made only for alternatives much stronger than NBUE. We show that a new Kolmogorov-Smirnov type test is much more powerful than its competitors in most cases.  相似文献   

16.
The bootstrap, the jackknife, and classical methods are compared through their confidence intervals for the proportion of affected fetuses in a common type of animal experiment. Specifically, suppose that for the ith of M pregnant animals, there are x i affected fetuses out of n i total in the litter. The conditional distribution of x i given n i is sometimes modeled as binomial (n i p i ), where p i is a realization from some unknown continuous density. The p i are not observable and it is of interest in some toxicological experiments to find confidence intervals for E(p). Theory suggests that the proposed parametric bootstrap should produce higher order agreement between the nominal and actual coverage than that exhibited by the usual nonparametric bootstrap. Some simulation results provide additional evidence of this superiority of the modified parametric bootstrap over the jack-knife and classical approaches. The proposed resampling is flexible enough to handle a more general model allowing correlation between p i and n i .  相似文献   

17.
For a nonparametric regression model y = m(x)+e with n independent observations, we analyze a robust method of finding the root of m(x) based on an M-estimation first discussed by Härdle & Gasser (1984). It is shown here that the robustness properties (minimaxity and breakdown function) of such an estimate are quite analogous to those of an M -estimator in the simple location model, but the rate of convergence is somewhat limited due to the nonparametric nature of the problem.  相似文献   

18.
Semiparametric Analysis of Truncated Data   总被引:1,自引:0,他引:1  
Randomly truncated data are frequently encountered in many studies where truncation arises as a result of the sampling design. In the literature, nonparametric and semiparametric methods have been proposed to estimate parameters in one-sample models. This paper considers a semiparametric model and develops an efficient method for the estimation of unknown parameters. The model assumes that K populations have a common probability distribution but the populations are observed subject to different truncation mechanisms. Semiparametric likelihood estimation is studied and the corresponding inferences are derived for both parametric and nonparametric components in the model. The method can also be applied to two-sample problems to test the difference of lifetime distributions. Simulation results and a real data analysis are presented to illustrate the methods.  相似文献   

19.
This paper suggests some distribution-free methods for testing hypothesis of parallelism and concurrence of two linear regressions. We assume that the independent variable x is equally spaced. The proposed procedures are compared with nonparametric competitors and the normal theory t-test.  相似文献   

20.
In this article we consider the problem of estimating a nonparametric conditional mean function with mixed discrete and continuous covariates by the nonparametric k-nearest-neighbor (k-nn) method. We derive the asymptotic normality result of the proposed estimator and use Monte Carlo simulations to demonstrate its finite sample performance. We also provide an illustrative empirical example of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号