首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Hea-Jung Kim  Taeyoung Roh 《Statistics》2013,47(5):1082-1111
In regression analysis, a sample selection scheme often applies to the response variable, which results in missing not at random observations on the variable. In this case, a regression analysis using only the selected cases would lead to biased results. This paper proposes a Bayesian methodology to correct this bias based on a semiparametric Bernstein polynomial regression model that incorporates the sample selection scheme into a stochastic monotone trend constraint, variable selection, and robustness against departures from the normality assumption. We present the basic theoretical properties of the proposed model that include its stochastic representation, sample selection bias quantification, and hierarchical model specification to deal with the stochastic monotone trend constraint in the nonparametric component, simple bias corrected estimation, and variable selection for the linear components. We then develop computationally feasible Markov chain Monte Carlo methods for semiparametric Bernstein polynomial functions with stochastically constrained parameter estimation and variable selection procedures. We demonstrate the finite-sample performance of the proposed model compared to existing methods using simulation studies and illustrate its use based on two real data applications.  相似文献   

2.
We develope an M-estimator for partially linear models in which the nonparametric component is subject to various shape constraints. Bernstein polynomials are used to approximate the unknown nonparametric function, and shape constraints are imposed on the coefficients. Asymptotic normality of regression parameters and the optimal rate of convergence of the shape-restricted nonparametric function estimator are established under very mild conditions. Some simulation studies and a real data analysis are conducted to evaluate the finite sample performance of the proposed method.  相似文献   

3.
This paper provides a Bayesian estimation procedure for monotone regression models incorporating the monotone trend constraint subject to uncertainty. For monotone regression modeling with stochastic restrictions, we propose a Bayesian Bernstein polynomial regression model using two-stage hierarchical prior distributions based on a family of rectangle-screened multivariate Gaussian distributions extended from the work of Gurtis and Ghosh [7 S.M. Curtis and S.K. Ghosh, A variable selection approach to monotonic regression with Bernstein polynomials, J. Appl. Stat. 38 (2011), pp. 961976. doi: 10.1080/02664761003692423[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]]. This approach reflects the uncertainty about the prior constraint, and thus proposes a regression model subject to monotone restriction with uncertainty. Based on the proposed model, we derive the posterior distributions for unknown parameters and present numerical schemes to generate posterior samples. We show the empirical performance of the proposed model based on synthetic data and real data applications and compare the performance to the Bernstein polynomial regression model of Curtis and Ghosh [7 S.M. Curtis and S.K. Ghosh, A variable selection approach to monotonic regression with Bernstein polynomials, J. Appl. Stat. 38 (2011), pp. 961976. doi: 10.1080/02664761003692423[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]] for the shape restriction with certainty. We illustrate the effectiveness of our proposed method that incorporates the uncertainty of the monotone trend and automatically adapts the regression function to the monotonicity, through empirical analysis with synthetic data and real data applications.  相似文献   

4.
This paper is concerned with selection of explanatory variables in generalized linear models (GLM). The class of GLM's is quite large and contains e.g. the ordinary linear regression, the binary logistic regression, the probit model and Poisson regression with linear or log-linear parameter structure. We show that, through an approximation of the log likelihood and a certain data transformation, the variable selection problem in a GLM can be converted into variable selection in an ordinary (unweighted) linear regression model. As a consequence no specific computer software for variable selection in GLM's is needed. Instead, some suitable variable selection program for linear regression can be used. We also present a simulation study which shows that the log likelihood approximation is very good in many practical situations. Finally, we mention briefly possible extensions to regression models outside the class of GLM's.  相似文献   

5.
In data sets with many predictors, algorithms for identifying a good subset of predictors are often used. Most such algorithms do not allow for any relationships between predictors. For example, stepwise regression might select a model containing an interaction AB but neither main effect A or B. This paper develops mathematical representations of this and other relations between predictors, which may then be incorporated in a model selection procedure. A Bayesian approach that goes beyond the standard independence prior for variable selection is adopted, and preference for certain models is interpreted as prior information. Priors relevant to arbitrary interactions and polynomials, dummy variables for categorical factors, competing predictors, and restrictions on the size of the models are developed. Since the relations developed are for priors, they may be incorporated in any Bayesian variable selection algorithm for any type of linear model. The application of the methods here is illustrated via the stochastic search variable selection algorithm of George and McCulloch (1993), which is modified to utilize the new priors. The performance of the approach is illustrated with two constructed examples and a computer performance dataset.  相似文献   

6.
Bernstein polynomials have many interesting properties. In statistics, they were mainly used to estimate density functions and regression relationships. The main objective of this paper is to promote further use of Bernstein polynomials in statistics. This includes (1) providing a high-level approximation of the moments of a continuous function g(X) of a random variable X, and (2) proving Jensen’s inequality concerning a convex function without requiring second differentiability of the function. The approximation in (1) is demonstrated to be quite superior to the delta method, which is used to approximate the variance of g(X) with the added assumption of differentiability of the function. Two numerical examples are given to illustrate the application of the proposed methodology in (1).  相似文献   

7.
Nonparametric seemingly unrelated regression provides a powerful alternative to parametric seemingly unrelated regression for relaxing the linearity assumption. The existing methods are limited, particularly with sharp changes in the relationship between the predictor variables and the corresponding response variable. We propose a new nonparametric method for seemingly unrelated regression, which adopts a tree-structured regression framework, has satisfiable prediction accuracy and interpretability, no restriction on the inclusion of categorical variables, and is less vulnerable to the curse of dimensionality. Moreover, an important feature is constructing a unified tree-structured model for multivariate data, even though the predictor variables corresponding to the response variable are entirely different. This unified model can offer revelatory insights such as underlying economic meaning. We propose the key factors of tree-structured regression, which are an impurity function detecting complex nonlinear relationships between the predictor variables and the response variable, split rule selection with negligible selection bias, and tree size determination solving underfitting and overfitting problems. We demonstrate our proposed method using simulated data and illustrate it using data from the Korea stock exchange sector indices.  相似文献   

8.
This paper proposes the use of the Bernstein–Dirichlet process prior for a new nonparametric approach to estimating the link function in the single-index model (SIM). The Bernstein–Dirichlet process prior has so far mainly been used for nonparametric density estimation. Here we modify this approach to allow for an approximation of the unknown link function. Instead of the usual Gaussian distribution, the error term is assumed to be asymmetric Laplace distributed which increases the flexibility and robustness of the SIM. To automatically identify truly active predictors, spike-and-slab priors are used for Bayesian variable selection. Posterior computations are performed via a Metropolis-Hastings-within-Gibbs sampler using a truncation-based algorithm for stick-breaking priors. We compare the efficiency of the proposed approach with well-established techniques in an extensive simulation study and illustrate its practical performance by an application to nonparametric modelling of the power consumption in a sewage treatment plant.  相似文献   

9.
Monotonic transformations of explanatory continuous variables are often used to improve the fit of the logistic regression model to the data. However, no analytic studies have been done to study the impact of such transformations. In this paper, we study invariant properties of the logistic regression model under monotonic transformations. We prove that the maximum likelihood estimates, information value, mutual information, Kolmogorov–Smirnov (KS) statistics, and lift table are all invariant under certain monotonic transformations.  相似文献   

10.
We present APproximated Exhaustive Search (APES), which enables fast and approximated exhaustive variable selection in Generalised Linear Models (GLMs). While exhaustive variable selection remains as the gold standard in many model selection contexts, traditional exhaustive variable selection suffers from computational feasibility issues. More precisely, there is often a high cost associated with computing maximum likelihood estimates (MLE) for all subsets of GLMs. Efficient algorithms for exhaustive searches exist for linear models, most notably the leaps‐and‐bound algorithm and, more recently, the mixed integer optimisation (MIO) algorithm. The APES method learns from observational weights in a generalised linear regression super‐model and reformulates the GLM problem as a linear regression problem. In this way, APES can approximate a true exhaustive search in the original GLM space. Where exhaustive variable selection is not computationally feasible, we propose a best‐subset search, which also closely approximates a true exhaustive search. APES is made available in both as a standalone R package as well as part of the already existing mplot package.  相似文献   

11.
This paper addresses the problem of simultaneous variable selection and estimation in the random-intercepts model with the first-order lag response. This type of model is commonly used for analyzing longitudinal data obtained through repeated measurements on individuals over time. This model uses random effects to cover the intra-class correlation, and the first lagged response to address the serial correlation, which are two common sources of dependency in longitudinal data. We demonstrate that the conditional likelihood approach by ignoring correlation among random effects and initial responses can lead to biased regularized estimates. Furthermore, we demonstrate that joint modeling of initial responses and subsequent observations in the structure of dynamic random-intercepts models leads to both consistency and Oracle properties of regularized estimators. We present theoretical results in both low- and high-dimensional settings and evaluate regularized estimators' performances by conducting simulation studies and analyzing a real dataset. Supporting information is available online.  相似文献   

12.
Summary.  The family of inverse regression estimators that was recently proposed by Cook and Ni has proven effective in dimension reduction by transforming the high dimensional predictor vector to its low dimensional projections. We propose a general shrinkage estimation strategy for the entire inverse regression estimation family that is capable of simultaneous dimension reduction and variable selection. We demonstrate that the new estimators achieve consistency in variable selection without requiring any traditional model, meanwhile retaining the root n estimation consistency of the dimension reduction basis. We also show the effectiveness of the new estimators through both simulation and real data analysis.  相似文献   

13.
We examine the effects of modelling errors, such as underfitting and overfitting, on the asymptotic power of tests of association between an explanatory variable x and an outcome in the setting of generalized linear models. The regression function for x is approximated by a polynomial or another simple function, and a chi-square statistic is used to test whether the coefficients of the approximation are simultaneously equal to zero. Adding terms to the approximation increases asymptotic power if and only if the fit of the model increases by a certain quantifiable amount. Although a high degree of freedom approximation offers robustness to the shape of the unknown regression function, a low degree of freedom approximation can yield much higher asymptotic power even when the approximation is very poor. In practice, it is useful to compute the power of competing test statistics across the range of alternatives that are plausible a priori. This approach is illustrated through an application in epidemiology.  相似文献   

14.
We develop a Bayesian estimation method to non-parametric mixed-effect models under shape-constrains. The approach uses a hierarchical Bayesian framework and characterizations of shape-constrained Bernstein polynomials (BPs). We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of BPs to ensure the desired shape constraints. The small sample properties of the Bayesian shape-constrained estimators across a range of functions are provided via simulation studies. Two real data analysis are given to illustrate the application of the proposed method.  相似文献   

15.
We consider logistic regression with covariate measurement error. Most existing approaches require certain replicates of the error‐contaminated covariates, which may not be available in the data. We propose generalized method of moments (GMM) nonparametric correction approaches that use instrumental variables observed in a calibration subsample. The instrumental variable is related to the underlying true covariates through a general nonparametric model, and the probability of being in the calibration subsample may depend on the observed variables. We first take a simple approach adopting the inverse selection probability weighting technique using the calibration subsample. We then improve the approach based on the GMM using the whole sample. The asymptotic properties are derived, and the finite sample performance is evaluated through simulation studies and an application to a real data set.  相似文献   

16.
In this article, we propose a new modeling approach for the multivariate growth curve model with distribution-free errors, which is a useful tool for analyzing multiple-response repeated measurements. We first use the outer product least-squares technique to directly estimate covariance and then explore the feasible generalized least-squares technique to derive the estimator of regression coefficients. Large-sample properties are investigated for these estimators. Moreover, the above estimations for covariance and regression coefficients are extended to the situation under certain null hypothesis tests and the best subset BIC is used for variable selection. A real dataset is analyzed to demonstrate the usefulness and competency of the proposed methodology for model specification (identification) and model fitting (parameter estimation) in multiple-response repeated measurements.  相似文献   

17.
Many methods have been developed in the literature for regression analysis of current status data with noninformative censoring and also some approaches have been proposed for semiparametric regression analysis of current status data with informative censoring. However, the existing approaches for the latter situation are mainly on specific models such as the proportional hazards model and the additive hazard model. Corresponding to this, in this paper, we consider a general class of semiparametric linear transformation models and develop a sieve maximum likelihood estimation approach for the inference. In the method, the copula model is employed to describe the informative censoring or relationship between the failure time of interest and the censoring time, and Bernstein polynomials are used to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established, and an extensive simulation study is conducted and indicates that the proposed approach works well for practical situations. In addition, an illustrative example is provided.  相似文献   

18.
The important feature of the accelerated hazards (AH) model is that it can capture the gradual effect of treatment. Because of the complexity in its estimation, few discussion has been made on the variable selection of the AH model. The Bayesian non-parametric prior, called the transformed Bernstein polynomial prior, is employed for simultaneously robust estimation and variable selection in sparse AH models. We first introduce a naive lasso-type accelerated hazards model, and later, in order to reduce estimation bias and improve variable selection accuracy, we further consider an adaptive lasso AH model as a direct extension of the naive lasso-type model. Through our simulation studies, we obtain that the adaptive lasso AH model performs better than the lasso-type model with respect to the variable selection and prediction accuracy. We also illustrate the performance of the proposed methods via a brain tumour study.  相似文献   

19.
We consider the problem of variable selection for a class of varying coefficient models with instrumental variables. We focus on the case that some covariates are endogenous variables, and some auxiliary instrumental variables are available. An instrumental variable based variable selection procedure is proposed by using modified smooth-threshold estimating equations (SEEs). The proposed procedure can automatically eliminate the irrelevant covariates by setting the corresponding coefficient functions as zero, and simultaneously estimate the nonzero regression coefficients by solving the smooth-threshold estimating equations. The proposed variable selection procedure avoids the convex optimization problem, and is flexible and easy to implement. Simulation studies are carried out to assess the performance of the proposed variable selection method.  相似文献   

20.
Principal component regression (PCR) has two steps: estimating the principal components and performing the regression using these components. These steps generally are performed sequentially. In PCR, a crucial issue is the selection of the principal components to be included in regression. In this paper, we build a hierarchical probabilistic PCR model with a dynamic component selection procedure. A latent variable is introduced to select promising subsets of components based upon the significance of the relationship between the response variable and principal components in the regression step. We illustrate this model using real and simulated examples. The simulations demonstrate that our approach outperforms some existing methods in terms of root mean squared error of the regression coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号