共查询到20条相似文献,搜索用时 15 毫秒
1.
In a graph G, a vertex dominates itself and its neighbors. A subset S ⊂eqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of G−S at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ
m
, and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r
k
(G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r
k
(G,γ
m
) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r
k
(G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r
k
(G,ddom) < 3n/4 + 2k/7. These bounds are sharp.
Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal. 相似文献
2.
H. Abdollahzadeh Ahangar Michael A. Henning Christian Löwenstein Yancai Zhao Vladimir Samodivkin 《Journal of Combinatorial Optimization》2014,27(2):241-255
In this paper we continue the study of Roman dominating functions in graphs. A signed Roman dominating function (SRDF) on a graph G=(V,E) is a function f:V→{?1,1,2} satisfying the conditions that (i) the sum of its function values over any closed neighborhood is at least one and (ii) for every vertex u for which f(u)=?1 is adjacent to at least one vertex v for which f(v)=2. The weight of a SRDF is the sum of its function values over all vertices. The signed Roman domination number of G is the minimum weight of a SRDF in G. We present various lower and upper bounds on the signed Roman domination number of a graph. Let G be a graph of order n and size m with no isolated vertex. We show that $\gamma _{\mathrm{sR}}(G) \ge\frac{3}{\sqrt{2}} \sqrt{n} - n$ and that γ sR(G)≥(3n?4m)/2. In both cases, we characterize the graphs achieving equality in these bounds. If G is a bipartite graph of order n, then we show that $\gamma_{\mathrm{sR}}(G) \ge3\sqrt{n+1} - n - 3$ , and we characterize the extremal graphs. 相似文献
3.
Let \(G\) be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, \(\gamma _t(G)\). A set \(S\) of vertices in \(G\) is a disjunctive total dominating set of \(G\) if every vertex is adjacent to a vertex of \(S\) or has at least two vertices in \(S\) at distance \(2\) from it. The disjunctive total domination number, \(\gamma ^d_t(G)\), is the minimum cardinality of such a set. We observe that \(\gamma ^d_t(G) \le \gamma _t(G)\). We prove that if \(G\) is a connected graph of order \(n \ge 8\), then \(\gamma ^d_t(G) \le 2(n-1)/3\) and we characterize the extremal graphs. It is known that if \(G\) is a connected claw-free graph of order \(n\), then \(\gamma _t(G) \le 2n/3\) and this upper bound is tight for arbitrarily large \(n\). We show this upper bound can be improved significantly for the disjunctive total domination number. We show that if \(G\) is a connected claw-free graph of order \(n > 14\), then \(\gamma ^d_t(G) \le 4n/7\) and we characterize the graphs achieving equality in this bound. 相似文献
4.
Dettlaff Magda Gözüpek Didem Raczek Joanna 《Journal of Combinatorial Optimization》2022,44(2):921-933
Journal of Combinatorial Optimization - Given a graph $$G=(V(G), E(G))$$ , the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are... 相似文献
5.
Let G=(V,E) be a graph. A set S⊆V is a restrained dominating set if every vertex in V−S is adjacent to a vertex in S and to a vertex in V−S. The restrained domination number of G, denoted γ
r
(G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show
that if G is a cubic graph of order n, then
gr(G) 3 \fracn4\gamma_{r}(G)\geq \frac{n}{4}
, and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then
gr(G) £ \frac5n11.\gamma _{r}(G)\leq \frac{5n}{11}.
Lastly, we show that if G is a claw-free cubic graph, then γ
r
(G)=γ(G). 相似文献
6.
Akbari A. Akbari S. Doosthosseini A. Hadizadeh Z. Henning Michael A. Naraghi A. 《Journal of Combinatorial Optimization》2022,43(1):28-41
Journal of Combinatorial Optimization - A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in addition, S is an independent... 相似文献
7.
A set S of vertices in a graph G=(V,E) is a total restrained dominating set (TRDS) of G if every vertex of G is adjacent to a vertex in S and every vertex of V−S is adjacent to a vertex in V−S. The total restrained domination number of G, denoted by γ tr (G), is the minimum cardinality of a TRDS of G. In this paper we characterize the claw-free graphs G of order n with γ tr (G)=n. Also, we show that γ tr (G)≤n−Δ+1 if G is a connected claw-free graph of order n≥4 with maximum degree Δ≤n−2 and minimum degree at least 2 and characterize those graphs which achieve this bound. 相似文献
8.
Lutz Volkmann 《Journal of Combinatorial Optimization》2016,32(3):855-871
Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A signed total Roman dominating function (STRDF) on a graph \(G\) is a function \(f:V(G)\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{x\in N(v)}f(x)\ge 1\) for each vertex \(v\in V(G)\), where \(N(v)\) is the neighborhood of \(v\), and (ii) every vertex \(u\) for which \(f(u)=-1\) is adjacent to at least one vertex \(v\) for which \(f(v)=2\). The weight of an SRTDF \(f\) is \(\sum _{v\in V(G)}f(v)\). The signed total Roman domination number \(\gamma _{stR}(G)\) of \(G\) is the minimum weight of an STRDF on \(G\). In this paper we initiate the study of the signed total Roman domination number of graphs, and we present different bounds on \(\gamma _{stR}(G)\). In addition, we determine the signed total Roman domination number of some classes of graphs. 相似文献
9.
M. H. Akhbari R. Hasni O. Favaron H. Karami S. M. Sheikholeslami 《Journal of Combinatorial Optimization》2013,26(1):10-18
A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by V?S is connected. The outer-connected domination number $\widetilde{\gamma}_{c}(G)$ is the minimum size of such a set. We prove that if δ(G)≥2 and diam?(G)≤2, then $\widetilde{\gamma}_{c}(G)\le (n+1)/2$ , and we study the behavior of $\widetilde{\gamma}_{c}(G)$ under an edge addition. 相似文献
10.
A set S of vertices of a graph G is a total outer-connected dominating set if every vertex in V(G) is adjacent to some vertex in S and the subgraph induced by V?S is connected. The total outer-connected domination number γ toc (G) is the minimum size of such a set. We give some properties and bounds for γ toc in general graphs and in trees. For graphs of order n, diameter 2 and minimum degree at least 3, we show that $\gamma_{toc}(G)\le \frac{2n-2}{3}$ and we determine the extremal graphs. 相似文献
11.
H. Abdollahzadeh Ahangar L. Asgharsharghi S. M. Sheikholeslami L. Volkmann 《Journal of Combinatorial Optimization》2016,32(1):299-317
Let \(G = (V;E)\) be a simple graph with vertex set \(V\) and edge set \(E\). A signed mixed Roman dominating function (SMRDF) of \(G\) is a function \(f: V\cup E\rightarrow \{-1,1,2\}\) satisfying the conditions that (i) \(\sum _{y\in N_m[x]}f(y)\ge 1\) for each \(x\in V\cup E\), where \(N_m[x]\) is the set, called mixed closed neighborhood of \(x\), consists of \(x\) and the elements of \(V\cup E\) adjacent or incident to \(x\) (ii) every element \(x\in V\cup E\) for which \(f(x) = -1\) is adjacent or incident to at least one element \(y\in V\cup E\) for which \(f(y) = 2\). The weight of a SMRDF \(f\) is \(\omega (f)=\sum _{x\in V\cup E}f(x)\). The signed mixed Roman domination number \(\gamma _{sR}^*(G)\) of \(G\) is the minimum weight of a SMRDF of \(G\). In this paper we initiate the study of the signed mixed Roman domination number and we present bounds for this parameter. In particular, we determine this parameter for some classes of graphs. 相似文献
12.
Wyatt J. Desormeaux Teresa W. Haynes Michael A. Henning 《Journal of Combinatorial Optimization》2013,25(1):47-59
Let u and v be vertices of a graph G, such that the distance between u and v is two and x is a common neighbor of u and v. We define the edge lift of uv off x as the process of removing edges ux and vx while adding the edge uv to G. In this paper, we investigate the effect that edge lifting has on the total domination number of a graph. Among other results, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. Trees for which every possible edge lift increases the total domination number are characterized. 相似文献
13.
14.
Given real numbers b≥a>0, an (a,b)-Roman dominating function of a graph G=(V,E) is a function f:V→{0,a,b} such that every vertex v with f(v)=0 has a neighbor u with f(u)=b. An independent/connected/total (a,b)-Roman dominating function is an (a,b)-Roman dominating function f such that {v∈V:f(v)≠0} induces a subgraph without edges/that is connected/without isolated vertices. For a weight function $w{:} V\to\Bbb{R}$ , the weight of f is w(f)=∑ v∈V w(v)f(v). The weighted (a,b)-Roman domination number $\gamma^{(a,b)}_{R}(G,w)$ is the minimum weight of an (a,b)-Roman dominating function of G. Similarly, we can define the weighted independent (a,b)-Roman domination number $\gamma^{(a,b)}_{Ri}(G,w)$ . In this paper, we first prove that for any fixed (a,b) the (a,b)-Roman domination and the total/connected/independent (a,b)-Roman domination problems are NP-complete for bipartite graphs. We also show that for any fixed (a,b) the (a,b)-Roman domination and the total/connected/weighted independent (a,b)-Roman domination problems are NP-complete for chordal graphs. We then give linear-time algorithms for the weighted (a,b)-Roman domination problem with b≥a>0, and the weighted independent (a,b)-Roman domination problem with 2a≥b≥a>0 on strongly chordal graphs with a strong elimination ordering provided. 相似文献
15.
A vertex subset S of a graph G=(V,E) is a paired dominating set if every vertex of G is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching. The paired domination number of G, denoted by γ pr (G), is the minimum cardinality of a paired dominating set of?G. A?graph with no isolated vertex is called paired domination vertex critical, or briefly γ pr -critical, if for any vertex v of G that is not adjacent to any vertex of degree one, γ pr (G?v)<γ pr (G). A?γ pr -critical graph G is said to be k-γ pr -critical if γ pr (G)=k. In this paper, we firstly show that every 4-γ pr -critical graph of even order has a perfect matching if it is K 1,5-free and every 4-γ pr -critical graph of odd order is factor-critical if it is K 1,5-free. Secondly, we show that every 6-γ pr -critical graph of even order has a perfect matching if it is K 1,4-free. 相似文献
16.
For k??1 an integer, a set S of vertices in a graph G with minimum degree at least?k is a k-tuple total dominating set of G if every vertex of G is adjacent to at least k vertices in S. The minimum cardinality of a k-tuple total dominating set of G is the k-tuple total domination number of G. When k=1, the k-tuple total domination number is the well-studied total domination number. In this paper, we establish upper and lower bounds on the k-tuple total domination number of the cross product graph G×H for any two graphs G and H with minimum degree at least?k. In particular, we determine the exact value of the k-tuple total domination number of the cross product of two complete graphs. 相似文献
17.
18.
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number \(\gamma _\mathrm{t2}(G)\) is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number \(\gamma _\mathrm{pr2}(G)\) is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number \(\gamma (G)\), the total domination \(\gamma _t(G)\), and the paired domination number \(\gamma _\mathrm{pr}(G)\) are related to the semitotal and semipaired domination numbers by the following inequalities: \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)\) and \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)\). Given two graph parameters \(\mu \) and \(\psi \) related by a simple inequality \(\mu (G) \le \psi (G)\) for every graph G having no isolated vertices, a graph is \((\mu ,\psi )\)-perfect if every induced subgraph H with no isolated vertices satisfies \(\mu (H) = \psi (H)\). Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of \((\mu ,\psi )\)-perfect graphs, where \(\mu \) and \(\psi \) are domination parameters including \(\gamma \), \(\gamma _t\) and \(\gamma _\mathrm{pr}\). We study classes of perfect graphs for the possible combinations of parameters in the inequalities when \(\gamma _\mathrm{t2}\) and \(\gamma _\mathrm{pr2}\) are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs. 相似文献
19.
Jian Guan Xiaoyan Liu Changhong Lu Zhengke Miao 《Journal of Combinatorial Optimization》2013,25(4):639-645
Let G=(V,E) be a graph, a function g:E→{?1,1} is said to be a signed cycle dominating function (SCDF for short) of G if ∑ e∈E(C) g(e)≥1 holds for any induced cycle C of G. The signed cycle domination number of G is defined as γ sc (G)=min{∑ e∈E(G) g(e)∣g is an SCDF of G}. Xu (Discrete Math. 309:1007–1012, 2009) first researched the signed cycle domination number of graphs and raised the following conjectures: (1) Let G be a maximal planar graphs of order n≥3. Then γ sc (G)=n?2; (2) For any graph G with δ(G)=3, γ sc (G)≥1; (3) For any 2-connected graph G, γ sc (G)≥1. In this paper, we present some results about these conjectures. 相似文献
20.
For an integer \(k \ge 1\), a distance k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of V(G) is at distance at most k from some vertex of S. The distance k-domination number \(\gamma _k(G)\) of G is the minimum cardinality of a distance k-dominating set of G. In this paper, we establish an upper bound on the distance k-domination number of a graph in terms of its order, minimum degree and maximum degree. We prove that for \(k \ge 2\), if G is a connected graph with minimum degree \(\delta \ge 2\) and maximum degree \(\Delta \) and of order \(n \ge \Delta + k - 1\), then \(\gamma _k(G) \le \frac{n + \delta - \Delta }{\delta + k - 1}\). This result improves existing known results. 相似文献