首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ordinary least-square estimators for linear regression analysis with multicollinearity and outliers lead to unfavorable results. In this article, we propose a new robust modified ridge M-estimator (MRME) based on M-estimator (ME) to deal with the combined problem resulting from multicollinearity and outliers in the y-direction. MRME outperforms modified ridge estimator, robust ridge estimator and ME, according to mean squares error criterion. Furthermore, a numerical example and a Monte Carlo simulation experiment are given to illustrate some of the theoretical results.  相似文献   

2.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

3.
The least-squares regression estimator can be very sensitive in the presence of multicollinearity and outliers in the data. We introduce a new robust estimator based on the MM estimator. By considering weights, also the resulting MM-Liu estimator is highly robust, but also the estimation of the biasing parameter is robustified. Also for high-dimensional data, a robust Liu-type estimator is introduced, based on the Partial Robust M-estimator. Simulation experiments and a real dataset show the advantages over the standard estimators and other robustness proposals.  相似文献   

4.
In the multiple linear regression, multicollinearity and outliers are commonly occurring problems. They produce undesirable effects on the ordinary least squares estimator. Many alternative parameter estimation methods are available in the literature which deals with these problems independently. In practice, it may happen that the multicollinearity and outliers occur simultaneously. In this article, we present a new estimator called as Linearized Ridge M-estimator which combats the problem of simultaneous occurrence of multicollinearity and outliers. A real data example and a simulation study is carried out to illustrate the performance of the proposed estimator.  相似文献   

5.
Consider the linear regression model y =β01 ++ in the usual notation. It is argued that the class of ordinary ridge estimators obtained by shrinking the least squares estimator by the matrix (X1X + kI)-1X'X is sensitive to outliers in the ^variable. To overcome this problem, we propose a new class of ridge-type M-estimators, obtained by shrinking an M-estimator (instead of the least squares estimator) by the same matrix. Since the optimal value of the ridge parameter k is unknown, we suggest a procedure for choosing it adaptively. In a reasonably large scale simulation study with a particular M-estimator, we found that if the conditions are such that the M-estimator is more efficient than the least squares estimator then the corresponding ridge-type M-estimator proposed here is better, in terms of a Mean Squared Error criteria, than the ordinary ridge estimator with k chosen suitably. An example illustrates that the estimators proposed here are less sensitive to outliers in the y-variable than ordinary ridge estimators.  相似文献   

6.
The problem of multicollinearity and outliers in the dataset can strongly distort ordinary least-square estimates and lead to unreliable results. We propose a new Robust Liu-type M-estimator to cope with this combined problem of multicollinearity and outliers in the y-direction. Our new estimator has advantages over two-parameter Liu-type estimator, Ridge-type M-estimator, and M-estimator. Furthermore, we give a numerical example and a simulation study to illustrate some of the theoretical results.  相似文献   

7.
Consider the regression model y = beta 0 1 + Xbeta + epsilon. Recently, the Liu estimator, which is an alternative biased estimator beta L (d) = (X'X + I) -1 (X'X + dI)beta OLS , where 0<d<1 is a parameter, has been proposed to overcome multicollinearity . The advantage of beta L (d) over the ridge estimator beta R (k) is that beta L (d) is a linear function of d. Therefore, it is easier to choose d than to choose k in the ridge estimator. However, beta L (d) is obtained by shrinking the ordinary least squares (OLS) estimator using the matrix (X'X + I) -1 (X'X + dI) so that the presence of outliers in the y direction may affect the beta L (d) estimator. To cope with this combined problem of multicollinearity and outliers, we propose an alternative class of Liu-type M-estimators (LM-estimators) obtained by shrinking an M-estimator beta M , instead of the OLS estimator using the matrix (X'X + I) -1 (X'X + dI).  相似文献   

8.
It is developed that non-sample prior information about regression vector-parameter, usually in the form of constraints, improves the risk performance of the ordinary least squares estimator (OLSE) when it is shrunken. However, in practice, it may happen that both multicollinearity and outliers exist simultaneously in the data. In such a situation, the use of robust ridge estimator is suggested to overcome the undesirable effects of the OLSE. In this article, some prior information in the form of constraints is employed to improve the performance of this estimator in the multiple regression model. In this regard, shrinkage ridge robust estimators are defined. Advantages of the proposed estimators over the usual robust ridge estimator are also investigated using Monte-Carlo simulation as well as a real data example.  相似文献   

9.
In 2005 Lipovetsky and Conklin proposed an estimator, the two parameter ridge estimator (TRE), as an alternative to the ordinary least squares estimator (OLSE) and the ordinary ridge estimator (RE) in the presence of multicollinearity, and in 2006 Lipovetsky improved the two parameter model. In this paper, we introduce two new estimators, one of which is the modified two parameter ridge estimator (MTRE) defined by following Swindel's paper of 1976. The other one is the restricted two parameter ridge estimator (RTRE) which is derived by setting additional linear restrictions on the parameter vectors. This estimator is a generalization of the restricted least squares estimator (RLSE) and includes the restricted ridge estimator (RRE) proposed by Groß in 2003. A numerical example is provided and a simulation study is conducted for the comparisons of the RTRE with the OLSE, RLSE, RE, RRE and TRE.  相似文献   

10.
This paper considers the maximum likelihood type (M) estimator based on Student's t distribution for the location/scale model. The Student t M-estimator is generally thought to be robust to outliers. This paper shows that this is only true if the degrees of freedom parameter is kept fixed. By contrast, if the degrees of freedom parameter is also estimated from the data, the influence functions for the scale and degrees of freedom parameter become unbounded. Moreover, the influence function of the location parameter remains bounded, but its change-of-variance function is unboi~nded. The intuitioil behind these results is explained in the paper. The rates at which both the influence functions and the change-of-variance function diverge to infinity, are very slow. Tliis implies that outliers have to be extremely large in order to become detrimental to the performance of the Student t based M-estimator with estimated degrees of freedom. The theoretical results are illustrated in a a simulation experiment using several related competing estimators and several distributions for the error process.  相似文献   

11.
A new modified Jackknifed estimator for the Poisson regression model   总被引:1,自引:0,他引:1  
The Poisson regression is very popular in applied researches when analyzing the count data. However, multicollinearity problem arises for the Poisson regression model when the independent variables are highly intercorrelated. Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators and some methods for estimating the ridge parameter k in the Poisson regression have been proposed. It has been found that some estimators are better than the commonly used maximum-likelihood (ML) estimator and some other RR estimators. In this study, the modified Jackknifed Poisson ridge regression (MJPR) estimator is proposed to remedy the multicollinearity. A simulation study and a real data example are provided to evaluate the performance of estimators. Both mean-squared error and the percentage relative error are considered as the performance criteria. The simulation study and the real data example results show that the proposed MJPR method outperforms the Poisson ridge regression, Jackknifed Poisson ridge regression and the ML in all of the different situations evaluated in this paper.  相似文献   

12.
This article is concerned with the problem of multicollinearity in a linear model with linear restrictions. After introducing a spheral restricted condition, a new restricted ridge estimation method is proposed by minimizing the sum of squared residuals. The property of the new estimator in its superiority over the ordinary restricted least squares estimation is then theoretically analyzed. Furthermore, a sufficient and necessary condition for selecting the ridge parameter k is obtained. To simplify the selection of the ridge parameter, a sufficient condition is also given. Finally, a numerical example demonstrates the merit of the new method in the aspect of solving the multicollinearity over the ordinary restricted least squares estimation.  相似文献   

13.
The two parameter estimator proposed by Özkale and Kaç?ranlar [The restricted and unrestricted two parameter estimators. Comm Statist Theory Methods. 2007;36(15):2707–2725] is a general estimator which includes the ordinary least squares, the ridge and the Liu estimators as special cases. In the present paper we introduce Almon two parameter estimator based on the two parameter estimation procedure to deal with the problem of multicollinearity for the distiributed lag models. This estimator outperforms the Almon estimator according to the matrix mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters.  相似文献   

14.
A new stochastic mixed ridge estimator in linear regression model   总被引:1,自引:0,他引:1  
This paper is concerned with the parameter estimation in linear regression model with additional stochastic linear restrictions. To overcome the multicollinearity problem, a new stochastic mixed ridge estimator is proposed and its efficiency is discussed. Necessary and sufficient conditions for the superiority of the stochastic mixed ridge estimator over the ridge estimator and the mixed estimator in the mean squared error matrix sense are derived for the two cases in which the parametric restrictions are correct and are not correct. Finally, a numerical example is also given to show the theoretical results.  相似文献   

15.
One of the standard variable selection procedures in multiple linear regression is to use a penalisation technique in least‐squares (LS) analysis. In this setting, many different types of penalties have been introduced to achieve variable selection. It is well known that LS analysis is sensitive to outliers, and consequently outliers can present serious problems for the classical variable selection procedures. Since rank‐based procedures have desirable robustness properties compared to LS procedures, we propose a rank‐based adaptive lasso‐type penalised regression estimator and a corresponding variable selection procedure for linear regression models. The proposed estimator and variable selection procedure are robust against outliers in both response and predictor space. Furthermore, since rank regression can yield unstable estimators in the presence of multicollinearity, in order to provide inference that is robust against multicollinearity, we adjust the penalty term in the adaptive lasso function by incorporating the standard errors of the rank estimator. The theoretical properties of the proposed procedures are established and their performances are investigated by means of simulations. Finally, the estimator and variable selection procedure are applied to the Plasma Beta‐Carotene Level data set.  相似文献   

16.
This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used.  相似文献   

17.
A popular linear regression estimator for censored data is the one proposed by Buckley and James (1979). However, this estimator is not robust to outliers, which is not surprising since it is a modified version of the uncensored data least squares estimator. Lai and Ying (1994) have proposed an M-estimator for censored data that is a generalization of the Buckley- James estimator. In this paper we discuss a weighted least squares algorithm for computing these M-estimates and compare the performance of two Huber M-estimators with the Buckley-James estimator in a simulation study. We find that the Huber M-estimators perform more robustly for a broad range of censoring and error distributions.  相似文献   

18.
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined.  相似文献   

19.
In this article, we consider the problem of variable selection in linear regression when multicollinearity is present in the data. It is well known that in the presence of multicollinearity, performance of least square (LS) estimator of regression parameters is not satisfactory. Consequently, subset selection methods, such as Mallow's Cp, which are based on LS estimates lead to selection of inadequate subsets. To overcome the problem of multicollinearity in subset selection, a new subset selection algorithm based on the ridge estimator is proposed. It is shown that the new algorithm is a better alternative to Mallow's Cp when the data exhibit multicollinearity.  相似文献   

20.
In this article, we discuss the estimation of the parameter function for a functional logistic regression model in the presence of outliers. We consider ways that allow for the parameter estimator to be resistant to outliers, in addition to minimizing multicollinearity and reducing the high dimensionality, which is inherent with functional data. To achieve this, the functional covariates and functional parameter of the model are approximated in a finite-dimensional space generated by an appropriate basis. This approach reduces the functional model to a standard multiple logistic model with highly collinear covariates and potential high-dimensionality issues. The proposed estimator tackles these issues and also minimizes the effect of functional outliers. Results from a simulation study and a real world example are also presented to illustrate the performance of the proposed estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号