首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian semiparametric inference is considered for a loglinear model. This model consists of a parametric component for the regression coefficients and a nonparametric component for the unknown error distribution. Bayesian analysis is studied for the case of a parametric prior on the regression coefficients and a mixture-of-Dirichlet-processes prior on the unknown error distribution. A Markov-chain Monte Carlo (MCMC) method is developed to compute the features of the posterior distribution. A model selection method for obtaining a more parsimonious set of predictors is studied. The method adds indicator variables to the regression equation. The set of indicator variables represents all the possible subsets to be considered. A MCMC method is developed to search stochastically for the best subset. These procedures are applied to two examples, one with censored data.  相似文献   

2.
The authors consider the problem of Bayesian variable selection for proportional hazards regression models with right censored data. They propose a semi-parametric approach in which a nonparametric prior is specified for the baseline hazard rate and a fully parametric prior is specified for the regression coefficients. For the baseline hazard, they use a discrete gamma process prior, and for the regression coefficients and the model space, they propose a semi-automatic parametric informative prior specification that focuses on the observables rather than the parameters. To implement the methodology, they propose a Markov chain Monte Carlo method to compute the posterior model probabilities. Examples using simulated and real data are given to demonstrate the methodology.  相似文献   

3.
This paper is concerned with the problem of obtaining Bayesian prediction bounds of future observables from a finite mixture of Burr type XII distribution with its reciprocal based on type-I censored data. We consider the one-sample and two-sample prediction schemes using the Markov chain Monte Carlo algorithm. Numerical examples are given to illustrate the procedures and the accuracy of prediction intervals is investigated via extensive Monte Carlo simulation.  相似文献   

4.
We propose a density-tempered marginalized sequential Monte Carlo (SMC) sampler, a new class of samplers for full Bayesian inference of general state-space models. The dynamic states are approximately marginalized out using a particle filter, and the parameters are sampled via a sequential Monte Carlo sampler over a density-tempered bridge between the prior and the posterior. Our approach delivers exact draws from the joint posterior of the parameters and the latent states for any given number of state particles and is thus easily parallelizable in implementation. We also build into the proposed method a device that can automatically select a suitable number of state particles. Since the method incorporates sample information in a smooth fashion, it delivers good performance in the presence of outliers. We check the performance of the density-tempered SMC algorithm using simulated data based on a linear Gaussian state-space model with and without misspecification. We also apply it on real stock prices using a GARCH-type model with microstructure noise.  相似文献   

5.
This article designs a Sequential Monte Carlo (SMC) algorithm for estimation of Bayesian semi-parametric Stochastic Volatility model for financial data. In particular, it makes use of one of the most recent particle filters called Particle Learning (PL). SMC methods are especially well suited for state-space models and can be seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since they allow for online type inference. The posterior distributions are updated as new data is observed, which is exceedingly costly using MCMC. Also, PL allows for consistent online model comparison using sequential predictive log Bayes factors. A simulated data is used in order to compare the posterior outputs for the PL and MCMC schemes, which are shown to be almost identical. Finally, a short real data application is included.  相似文献   

6.
Abstract. We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non‐parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non‐parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.  相似文献   

7.
Conditional Prior Proposals in Dynamic Models   总被引:2,自引:0,他引:2  
ABSTRACT. Dynamic models extend state space models to non-normal observations. This paper suggests a specific hybrid Metropolis–Hastings algorithm as a simple device for Bayesian inference via Markov chain Monte Carlo in dynamic models. Hastings proposals from the (conditional) prior distribution of the unknown, time-varying parameters are used to update the corresponding full conditional distributions. It is shown through simulated examples that the methodology has optimal performance in situations where the prior is relatively strong compared to the likelihood. Typical examples include smoothing priors for categorical data. A specific blocking strategy is proposed to ensure good mixing and convergence properties of the simulated Markov chain. It is also shown that the methodology is easily extended to robust transition models using mixtures of normals. The applicability is illustrated with an analysis of a binomial and a binary time series, known in the literature.  相似文献   

8.
In this article, based on progressively Type-II censored samples from a heterogeneous population that can be represented by a finite mixture of two-component Rayleigh lifetime model, the problem of estimating the parameters and some lifetime parameters (reliability and hazard functions) are considered. Both Bayesian and maximum likelihood estimators are of interest. A class of natural conjugate prior densities is considered in the Bayesian setting. The Bayes estimators are obtained using both the symmetric (squared error) loss function, and the asymmetric (LINEX and General Entropy) loss functions. It has been seen that the estimators obtained can be easily evaluated for this type of censoring by using suitable numerical methods. Finally, the performance of the estimates have been compared on the basis of their simulated maximum square error via a Monte Carlo simulation study.  相似文献   

9.
Various exact tests for statistical inference are available for powerful and accurate decision rules provided that corresponding critical values are tabulated or evaluated via Monte Carlo methods. This article introduces a novel hybrid method for computing p‐values of exact tests by combining Monte Carlo simulations and statistical tables generated a priori. To use the data from Monte Carlo generations and tabulated critical values jointly, we employ kernel density estimation within Bayesian‐type procedures. The p‐values are linked to the posterior means of quantiles. In this framework, we present relevant information from the Monte Carlo experiments via likelihood‐type functions, whereas tabulated critical values are used to reflect prior distributions. The local maximum likelihood technique is employed to compute functional forms of prior distributions from statistical tables. Empirical likelihood functions are proposed to replace parametric likelihood functions within the structure of the posterior mean calculations to provide a Bayesian‐type procedure with a distribution‐free set of assumptions. We derive the asymptotic properties of the proposed nonparametric posterior means of quantiles process. Using the theoretical propositions, we calculate the minimum number of needed Monte Carlo resamples for desired level of accuracy on the basis of distances between actual data characteristics (e.g. sample sizes) and characteristics of data used to present corresponding critical values in a table. The proposed approach makes practical applications of exact tests simple and rapid. Implementations of the proposed technique are easily carried out via the recently developed STATA and R statistical packages.  相似文献   

10.
The purpose of the paper, is to explain how recent advances in Markov Chain Monte Carlo integration can facilitate the routine Bayesian analysis of the linear model when the prior distribution is completely user dependent. The method is based on a Metropolis-Hastings algorithm with a Student-t source distribution that can generate posterior moments as well as marginal posterior densities for model parameters. The method is illustrated with numerical examples where the combination of prior and likelihood information leads to multimodal posteriors due to prior-likelihood conflicts, and to cases where prior information can be summarized by symmetric stable Paretian distributions.  相似文献   

11.
This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available, thus motivating a Bayesian analysis. The Bayesian computation, however, can be difficult in this situation, especially when a large number of treatments is involved. Three computational methods are suggested to perform the analysis. The exact posterior density of any parameter of interest can be simulated based on random realizations taken from a restricted multivariate t distribution. The density can also be simulated using Markov chain Monte Carlo methods. The simulated density is accurate when a large number of random realizations is taken. However, it may take substantial amount of computer time when many treatments are involved. An alternative Laplacian approximation is discussed. The Laplacian method produces smooth and very accurate approximates to posterior densities, and takes only seconds of computer time. An example of a pipeline cracks experiment is used to illustrate the Bayesian approaches and the computational methods.  相似文献   

12.
Summary.  We describe novel Bayesian models for time–frequency inverse modelling of non-stationary signals. These models are based on the idea of a Gabor regression , in which a time series is represented as a superposition of translated, modulated versions of a window function exhibiting good time–frequency concentration. As a necessary consequence, the resultant set of potential predictors is in general overcomplete—constituting a frame rather than a basis—and hence the resultant models require careful regularization through appropriate choices of variable selection schemes and prior distributions. We introduce prior specifications that are tailored to representative time series, and we develop effective Markov chain Monte Carlo methods for inference. To highlight the potential applications of such methods, we provide examples using two of the most distinctive time–frequency surfaces—speech and music signals—as well as standard test functions from the wavelet regression literature.  相似文献   

13.
The maximum likelihood and Bayesian approaches have been considered for the two-parameter generalized exponential distribution based on record values with the number of trials following the record values (inter-record times). The maximum likelihood estimates are obtained under the inverse sampling and the random sampling schemes. It is shown that the maximum likelihood estimator of the shape parameter converges in mean square to the true value when the scale parameter is known. The Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The confidence intervals for the parameters are constructed based on asymptotic and Bayesian methods. The Bayes and the maximum likelihood estimators are compared in terms of the estimated risk by the Monte Carlo simulations. The comparison of the estimators based on the record values and the record values with their corresponding inter-record times are performed by using Monte Carlo simulations.  相似文献   

14.
This article develops the Bayesian estimators in the context of reference priors for the two-parameter Frechet distribution. The general forms of the second-order matching priors are also derived in case of any parameter of interest and concluded that the reference prior is also a second order matching prior. Since the Bayesian estimators cannot be obtained in closed form, they are obtained using Monte Carlo simulation and Laplace approximation. The Bayesian and maximum likelihood estimates are compared via simulation study. Two real-life data sets are analyzed for illustration and comparison purpose.  相似文献   

15.
We propose a Bayesian procedure to sample from the distribution of the multi-dimensional effective dose. This effective dose is the set of dose levels of multiple predictive factors that produce a binary response with a fixed probability.We apply our algorithms to parametric and semiparametric logistics regression models, respectively. The graphical display of random samples obtained through Markov chain Monte Carlo can provide some insight into the predictive distribution.  相似文献   

16.
The maximum likelihood and Bayesian approaches for parameter estimations and prediction of future record values have been considered for the two-parameter Burr Type XII distribution based on record values with the number of trials following the record values (inter-record times). Firstly, the Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, the Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. Secondly, the Bayes estimates are obtained with respect to a discrete prior for the first shape parameter and a conjugate prior for other shape parameter. The Bayes and the maximum likelihood estimates are compared in terms of the estimated risk by the Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record arising from the Burr Type XII distribution based on record data. The comparison of the derived predictors is carried out by using Monte Carlo simulations. A real data are analysed for illustration purposes.  相似文献   

17.
We develop a new class of reference priors for linear models with general covariance structures. A general Markov chain Monte Carlo algorithm is also proposed for implementing the computation. We present several examples to demonstrate the results: Bayesian penalized spline smoothing, a Bayesian approach to bivariate smoothing for a spatial model, and prior specification for structural equation models.  相似文献   

18.
We present a Bayesian method of ion channel analysis and apply it to a simulated data set. An alternating renewal process prior is assigned to the signal, and an autoregressive process is fitted to the noise. After choosing model hyperconstants to yield 'uninformative' priors on the parameters, the joint posterior distribution is computed by using the reversible jump Markov chain Monte Carlo method. A novel form of simulated tempering is used to improve the mixing of the original sampler.  相似文献   

19.
In this paper, we consider parametric Bayesian inference for stochastic differential equations driven by a pure‐jump stable Lévy process, which is observed at high frequency. In most cases of practical interest, the likelihood function is not available; hence, we use a quasi‐likelihood and place an associated prior on the unknown parameters. It is shown under regularity conditions that there is a Bernstein–von Mises theorem associated to the posterior. We then develop a Markov chain Monte Carlo algorithm for Bayesian inference, and assisted with theoretical results, we show how to scale Metropolis–Hastings proposals when the frequency of the data grows, in order to prevent the acceptance ratio from going to zero in the large data limit. Our algorithm is presented on numerical examples that help verify our theoretical findings.  相似文献   

20.
A Bayesian approach is considered to detect a change-point in the intercept of simple linear regression. The Jeffreys noninformative prior is employed and compared with the uniform prior in Bayesian analysis. The marginal posterior distributions of the change-point, the amount of shift and the slope are derived. Mean square errors, mean absolute errors and mean biases of some Bayesian estimates are considered by Monte Carlo methad and some numerical results are also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号