首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this work, we proposed an adaptive multivariate cumulative sum (CUSUM) statistical process control chart for signaling a range of location shifts. This method was based on the multivariate CUSUM control chart proposed by Pignatiello and Runger (1990 Pignatiello, J.J., Runger, G.C. (1990). Comparisons of multivariate CUSUM charts. J. Qual. Technol. 22(3):173186.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]), but we adopted the adaptive approach similar to that discussed by Dai et al. (2011 Dai, Y., Luo, Y., Li, Z., Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Qual. Reliab. Eng. Int. 27(7):877884.[Crossref], [Web of Science ®] [Google Scholar]), which was based on a different CUSUM method introduced by Crosier (1988 Crosier, R.B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 30(3):291303.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The reference value in this proposed procedure was changed adaptively in each run, with the current mean shift estimated by exponentially weighted moving average (EWMA) statistic. By specifying the minimal magnitude of the mean shift, our proposed control chart achieved a good overall performance for detecting a range of shifts rather than a single value. We compared our adaptive multivariate CUSUM method with that of Dai et al. (2001 Dai, Y., Luo, Y., Li, Z., Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Qual. Reliab. Eng. Int. 27(7):877884.[Crossref], [Web of Science ®] [Google Scholar]) and the non adaptive versions of these two methods, by evaluating both the steady state and zero state average run length (ARL) values. The detection efficiency of our method showed improvements over the comparative methods when the location shift is unknown but falls within an expected range.  相似文献   

2.
This article studies a unique feature of the binomial CUSUM chart in which the difference (d t ?d 0) is replaced by (d t ?d 0)2 in the formulation of the cumulative sum C t (where d t and d 0 are the actual and in-control numbers of nonconforming units, respectively, in a sample). Performance studies are reported and the results reveal that this new feature is able to increase the detection effectiveness when fraction nonconforming p becomes three to four times as large as the in-control value p 0. The design of the new binomial CUSUM chart is presented along with the calculation of the in-control and out-of-control Average Run Lengths (ARL0 and ARL1).  相似文献   

3.
In this article, we introduce a new multivariate cumulative sum chart, where the target mean shift is assumed to be a weighted sum of principal directions of the population covariance matrix. This chart provides an attractive performance in terms of average run length (ARL) for large-dimensional data and it also compares favorably to existing multivariate charts including Crosier's benchmark chart with updated values of the upper control limit and the associated ARL function. In addition, Monte Carlo simulations are conducted to assess the accuracy of the well-known Siegmund's approximation of the average ARL function when observations are normal distributed. As a byproduct of the article, we provide updated values of upper control limits and the associated ARL function for Crosier's multivariate CUSUM chart.  相似文献   

4.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

5.
Statistical Process Control (SPC) is a scientific approach to quality improvement in which data are collected and used as evidence of the performance of a process, organisation or set of equipment. One of the SPC techniques, the cumulative sum (CUSUM) method, first developed by E.S. Page (1961), uses a series of cumulative sums of sample data for online process control. This paper reviews CUSUM techniques applied to financial markets in several different ways. The performance of the CUSUM method in predicting regime shifts in stock market indices is then studied in detail. Research in this field so far does not take the transaction fees of buying and selling into consideration. As the study in this paper shows, the performances of the CUSUM when taking account of transaction fees are quite different to those not taking transaction fees into account. The CUSUM plan is defined by parameters h and k. Choosing the parameters of the method should be based on studies that take transaction fees into account. The performances of the CUSUM in different stock markets are also compared in this paper. The results show that the same CUSUM plan has remarkably different performances in different stock markets.  相似文献   

6.
The use of the np chart for monitoring fraction-defective is well-established, but there are a number of relatively simple alternatives based on run-lengths of conforming items. Here, the RL2 chart, based on the moving sum of two successive conforming run-lengths, is investigated in order to provide SPC practitioners with clear-cut guidance on the comparative performance of these competing charts. Both sampling inspection and 100% inspection are considered here, and it is shown that the RL2 chart can often be considerably more efficient than the np chart, but the comparative performance depends on the false-alarm rate used for the comparison. Graphs to aid parameter-choice for the RL2 chart are also provided.  相似文献   

7.
The development of control charts for monitoring processes associated with very low rates of nonconformities is increasingly becoming more important as manufacturing processes become more capable. Since the rate of nonconformities can typically be modeled by a simple homogeneous Poisson process, the perspective of monitoring the interarrival times using the exponential distribution becomes an alternative. Gan (1994) developed a CUSUM-based approach for monitoring the exponential mean. In this paper, we propose an alternative CUSUM-based approach based on its ease of implementation. We also provide a study of the relative performance of the two approaches.  相似文献   

8.
The combined EWMA-X chart is a commonly used tool for monitoring both large and small process shifts. However, this chart requires calculating and monitoring two statistics along with two sets of control limits. Thus, this study develops a single-featured EWMA-X (called SFEWMA-X) control chart which has the ability to simultaneously monitor both large and small process shifts using only one set of statistic and control limits. The proposed SFEWMA-X chart is further extended to monitoring the shifts in process standard deviation. A set of simulated data are used to demonstrate the proposed chart's superior performance in terms of average run length compared with that of the traditional charts. The experimental examples also show that the SFEWMA-X chart is neater and easier to visually interpret than the original EWMA-X chart.  相似文献   

9.
10.
The aim of this paper is to present a new method for solving the problem of detecting the out-of-control variables when a multivariate control chart signals. The main idea is based on Andrews curves. The proposed method is investigated thoroughly and is proved to have interesting results in comparison to a competing method.  相似文献   

11.
Modified cumulative sum (CUSUM) control charts and CUSUM schemes for residuals are suggested to detect changes in the covariance matrix of multivariate time series. Several properties of these schemes are derived when the in-control process is a stationary Gaussian process. A Monte Carlo study reveals that the proposed approaches show similar or even better performance than the schemes based on the multivariate exponentially weighted moving average (MEWMA) recursion. We illustrate how the control procedures can be applied to monitor the covariance structure of developed stock market indices.  相似文献   

12.
13.
The sequential probability ratio test (SPRT) chart is a very effective tool for monitoring manufacturing processes. This paper proposes a rational SPRT chart to monitor both process mean and variance. This SPRT chart determines the sampling interval d based on the rational subgroup concept according to the process conditions and administrative considerations. Since the rational subgrouping is widely adopted in the design and implementation of control charts, the studies of the rational SPRT have a practical significance. The rational SPRT chart is designed optimally in order to minimize the index average extra quadratic loss for the best overall performance. A systematic performance study has also been conducted. From an overall viewpoint, the rational SPRT chart is more effective than the cumulative sum chart by more than 63%. Furthermore, this article provides a design table, which contains the optimal values of the parameters of the rational SPRT charts for different specifications. This will greatly facilitate the potential users to select an appropriate SPRT chart for their applications. The users can also justify the application of the rational SPRT chart according to the achievable enhancement in detection effectiveness.  相似文献   

14.
The Zero-inflated Poisson distribution (ZIP) is used to model the defects in processes with a large number of zeros. We propose a control charting procedure using a combination of two cumulative sum (CUSUM) charts to detect increases in the parameters of ZIP process, one is a conforming run length (CRL) CUSUM chart and another is a zero truncated Poisson (ZTP) CUSUM chart. The control limits of the control charts are obtained using both Markov chain-based methods and simulations. Simulation experiments show that the proposed method outperforms an existing method. Finally, a real example is presented.  相似文献   

15.
Classical results on the asymptotic distribution of the likelihood ratio statistic rely on the assumption that the model chosen to construct the test statistic be correct. The model is said to be correct if it contains the true distribution of the observations. In this paper the asymptotic distribution of the likelihood ratio statistic is derived without the condition that the model need be correct.  相似文献   

16.
In this paper, a new single exponentially weighted moving average (EWMA) control chart based on the weighted likelihood ratio test, referred to as the WLRT chart, is proposed for the problem of monitoring the mean and variance of a normally distributed process variable. It is easy to design, fast to compute, and quite effective for diverse cases including the detection of the decrease in variability and individual observation case. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the average run length (ARL) and the sample size are provided. The in-control (IC) and out-of-control (OC) performance properties of the new chart are compared with some other existing EWMA-type charts. Our simulation results show that the IC run length distribution of the proposed chart is similar to that of a geometric distribution, and it provides quite a robust and satisfactory overall performance for detecting a wide range of shifts in the process mean and/or variability.  相似文献   

17.
18.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

19.
For the univariate case, the R chart and the S 2 chart are the most common charts used for monitoring the process dispersion. With the usual sample size of 4 and 5, the R chart is slightly inferior to the S 2 chart in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the chart based on the standardized sample ranges, we call the RMAX chart, is substantially inferior in terms of efficiency in detecting shifts in the covariance matrix than the VMAX chart, which is based on the standardized sample variances. The user's familiarity with sample ranges is a point in favor of the RMAX chart. An example is presented to illustrate the application of the proposed chart.  相似文献   

20.
The effectiveness of Bartlett adjustment, using one of several methods of deriving a Bartlett factor, in improving the chi-squared approximation to the distribution of the log likelihood ratio statistic is investigated by computer simulation in three situations of practical interest:tests of equality of exponential distributions, equality of normal distributions and equality of coefficients of variation of normal distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号