首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Summary.  When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof.  相似文献   

2.
Model uncertainty has become a central focus of policy discussion surrounding the determinants of economic growth. Over 140 regressors have been employed in growth empirics due to the proliferation of several new growth theories in the past two decades. Recently Bayesian model averaging (BMA) has been employed to address model uncertainty and to provide clear policy implications by identifying robust growth determinants. The BMA approaches were, however, limited to linear regression models that abstract from possible dependencies embedded in the covariance structures of growth determinants. The recent empirical growth literature has developed jointness measures to highlight such dependencies. We address model uncertainty and covariate dependencies in a comprehensive Bayesian framework that allows for structural learning in linear regressions and Gaussian graphical models. A common prior specification across the entire comprehensive framework provides consistency. Gaussian graphical models allow for a principled analysis of dependency structures, which allows us to generate a much more parsimonious set of fundamental growth determinants. Our empirics are based on a prominent growth dataset with 41 potential economic factors that has been utilized in numerous previous analyses to account for model uncertainty as well as jointness.  相似文献   

3.
The late-2000s financial crisis stressed the need to understand the world financial system as a network of countries, where cross-border financial linkages play a fundamental role in the spread of systemic risks. Financial network models, which take into account the complex interrelationships between countries, seem to be an appropriate tool in this context. To improve the statistical performance of financial network models, we propose to generate them by means of multivariate graphical models. We then introduce Bayesian graphical models, which can take model uncertainty into account, and dynamic Bayesian graphical models, which provide a convenient framework to model temporal cross-border data, decomposing the model into autoregressive and contemporaneous networks. The article shows how the application of the proposed models to the Bank of International Settlements locational banking statistics allows the identification of four distinct groups of countries, that can be considered central in systemic risk contagion.  相似文献   

4.
I consider the problem of estimating the Mahalanobis distance between multivariate normal populations when the population covariance matrix satisfies a graphical model. In addition to providing a clear understanding of the dependencies in a multivariate data set, the use of graphical models can reduce the variability of the estimated distances and improve inferences. I derive the asymptotic distribution of the estimated Mahalanobis distance under a general covariance model, which includes graphical models as a special case. Two examples are discussed.  相似文献   

5.
Markov chain Monte Carlo techniques have revolutionized the field of Bayesian statistics. Their power is so great that they can even accommodate situations in which the structure of the statistical model itself is uncertain. However, the analysis of such trans-dimensional (TD) models is not easy and available software may lack the flexibility required for dealing with the complexities of real data, often because it does not allow the TD model to be simply part of some bigger model. In this paper we describe a class of widely applicable TD models that can be represented by a generic graphical model, which may be incorporated into arbitrary other graphical structures without significantly affecting the mechanism of inference. We also present a decomposition of the reversible jump algorithm into abstract and problem-specific components, which provides infrastructure for applying the method to all models in the class considered. These developments represent a first step towards a context-free method for implementing TD models that will facilitate their use by applied scientists for the practical exploration of model uncertainty. Our approach makes use of the popular WinBUGS framework as a sampling engine and we illustrate its use via two simple examples in which model uncertainty is a key feature.  相似文献   

6.
In this note we develop a new multivariate copula model based on epsilon–skew–normal marginal densities for the purpose of examining biomarker dependency structures. We illustrate the flexibility and utility of this model via a variety of graphical tools and a data analysis example pertaining to salivary biomarker. The multivariate normal model is a sub-model of the multivariate epsilon–skew–normal distribution.  相似文献   

7.
Gaussian graphical models represent the backbone of the statistical toolbox for analyzing continuous multivariate systems. However, due to the intrinsic properties of the multivariate normal distribution, use of this model family may hide certain forms of context-specific independence that are natural to consider from an applied perspective. Such independencies have been earlier introduced to generalize discrete graphical models and Bayesian networks into more flexible model families. Here, we adapt the idea of context-specific independence to Gaussian graphical models by introducing a stratification of the Euclidean space such that a conditional independence may hold in certain segments but be absent elsewhere. It is shown that the stratified models define a curved exponential family, which retains considerable tractability for parameter estimation and model selection.  相似文献   

8.
Multivariate model validation is a complex decision-making problem involving comparison of multiple correlated quantities, based upon the available information and prior knowledge. This paper presents a Bayesian risk-based decision method for validation assessment of multivariate predictive models under uncertainty. A generalized likelihood ratio is derived as a quantitative validation metric based on Bayes’ theorem and Gaussian distribution assumption of errors between validation data and model prediction. The multivariate model is then assessed based on the comparison of the likelihood ratio with a Bayesian decision threshold, a function of the decision costs and prior of each hypothesis. The probability density function of the likelihood ratio is constructed using the statistics of multiple response quantities and Monte Carlo simulation. The proposed methodology is implemented in the validation of a transient heat conduction model, using a multivariate data set from experiments. The Bayesian methodology provides a quantitative approach to facilitate rational decisions in multivariate model assessment under uncertainty.  相似文献   

9.
The graphical belief model is a versatile tool for modeling complex systems. The graphical structure and its implicit probabilistic and logical independence conditions define the relationships between many of the variables of the problem. The graphical model is composed of a collection of local models:models of both interactions between the variables sharing a common hyperedge and information about single variables. These local models can be constructed with either probability distributions or belief functions. This paper takes the latter approach and describes simple models for univariate and multivariate belief functions. The examples are taken from both reliability and knowledge representation problems.  相似文献   

10.
We present a Bayesian analysis framework for matrix-variate normal data with dependency structures induced by rows and columns. This framework of matrix normal models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of prediction uncertainty, model structure search, and extensions to multidimensional arrays. Compared with Bayesian probabilistic matrix factorization, which integrates a Gaussian prior for single row of the data matrix, our proposed model, namely Bayesian hierarchical kernelized probabilistic matrix factorization, imposes Gaussian Process priors over multiple rows of the matrix. Hence, the learned model explicitly captures the underlying correlation among the rows and the columns. In addition, our method requires no specific assumptions like independence of latent factors for rows and columns, which obtains more flexibility for modeling real data compared to existing works. Finally, the proposed framework can be adapted to a wide range of applications, including multivariate analysis, times series, and spatial modeling. Experiments highlight the superiority of the proposed model in handling model uncertainty and model optimization.  相似文献   

11.
Abstract

In this paper we introduce continuous tree mixture model that is the mixture of undirected graphical models with tree structured graphs and is considered as multivariate analysis with a non parametric approach. We estimate its parameters, the component edge sets and mixture proportions through regularized maximum likalihood procedure. Our new algorithm, which uses expectation maximization algorithm and the modified version of Kruskal algorithm, simultaneosly estimates and prunes the mixture component trees. Simulation studies indicate this method performs better than the alternative Gaussian graphical mixture model. The proposed method is also applied to water-level data set and is compared with the results of Gaussian mixture model.  相似文献   

12.
In this article, we focus our attention on the general multivariate mixture model. We drive the relationship between the conditional and the unconditional reliability measures such as the hazard gradient, reversed hazard gradient, multivariate mean residual life, and multivariate reversed mean residual life. We present some sufficient conditions under which we can stochastically compare those vectors of general multivariate mixture models in the senses of various stochastic orderings.  相似文献   

13.
In geostatistics, detecting atypical observations is of special interest due to the changes they can cause in environmental and geological patterns. Several methods for detecting them have been already suggested for the univariate spatial case. However, the problem is more complicated when various variables are observed simultaneously and the spatial correlation among them must be taken into account. The aim of this paper is to detect outliers and influential observations in multivariate spatial linear models. For this purpose, we derive and explore two different methods. First, a multivariate version of the forward search algorithm is given, where locations with outliers are detected in the last steps of the procedure. Next, we derive influence measures to assess the impact of the observations on the multivariate spatial linear model. The procedures are easy to compute and to interpret by means of graphical representations. Finally, an example and a Monte Carlo study illustrate the performance of these methods for identification of outliers in multivariate spatial linear models.  相似文献   

14.
This paper concerns the geometric treatment of graphical models using Bayes linear methods. We introduce Bayes linear separation as a second order generalised conditional independence relation, and Bayes linear graphical models are constructed using this property. A system of interpretive and diagnostic shadings are given, which summarise the analysis over the associated moral graph. Principles of local computation are outlined for the graphical models, and an algorithm for implementing such computation over the junction tree is described. The approach is illustrated with two examples. The first concerns sales forecasting using a multivariate dynamic linear model. The second concerns inference for the error variance matrices of the model for sales, and illustrates the generality of our geometric approach by treating the matrices directly as random objects. The examples are implemented using a freely available set of object-oriented programming tools for Bayes linear local computation and graphical diagnostic display.  相似文献   

15.
Advances in data collection and storage have tremendously increased the presence of functional data, whose graphical representations are curves, images or shapes. As a new area of statistics, functional data analysis extends existing methodologies and theories from the realms of functional analysis, generalized linear model, multivariate data analysis, nonparametric statistics, regression models and many others. From both methodological and practical viewpoints, this paper provides a review of functional principal component analysis, and its use in explanatory analysis, modeling and forecasting, and classification of functional data.  相似文献   

16.
The Weibull proportional hazards model is commonly used for analysing survival data. However, formal tests of model adequacy are still lacking. It is well known that residual-based goodness-of-fit measures are inappropriate for censored data. In this paper, a graphical diagnostic plot of Cox–Snell residuals with a simulated envelope added is proposed to assess the adequacy of Weibull survival models. Both single component and two-component mixture models with random effects are considered for recurrent failure time data. The effectiveness of the diagnostic method is illustrated using simulated data sets and data on recurrent urinary tract infections of elderly women.  相似文献   

17.
A MATLAB package testing for multivariate normality (TMVN) is implemented as an interactive and graphical tool to examine multivariate normality (MVN). Monte Carlo simulation studies have failed to find a uniformly most powerful MVN test, which requires a rather extensive statistical inference procedure. TMVN contains several competitive MVN tests and provides a flexible and extensive testing environment for univariate or multivariate data analyses. Simulated results provide information of which test may possess more power for the selected non-MVN alternatives. Fisher's Iris data are used to show how TMVN can be used in practice.  相似文献   

18.
We present a method for using posterior samples produced by the computer program BUGS (Bayesian inference Using Gibbs Sampling) to obtain approximate profile likelihood functions of parameters or functions of parameters in directed graphical models with incomplete data. The method can also be used to approximate integrated likelihood functions. It is easily implemented and it performs a good approximation. The profile likelihood represents an aspect of the parameter uncertainty which does not depend on the specification of prior distributions, and it can be used as a worthwhile supplement to BUGS that enable us to do both Bayesian and likelihood based analyses in directed graphical models.  相似文献   

19.
Forecasting with longitudinal data has been rarely studied. Most of the available studies are for continuous response and all of them are for univariate response. In this study, we consider forecasting multivariate longitudinal binary data. Five different models including simple ones, univariate and multivariate marginal models, and complex ones, marginally specified models, are studied to forecast such data. Model forecasting abilities are illustrated via a real-life data set and a simulation study. The simulation study includes a model independent data generation to provide a fair environment for model competitions. Independent variables are forecast as well as the dependent ones to mimic the real-life cases best. Several accuracy measures are considered to compare model forecasting abilities. Results show that complex models yield better forecasts.  相似文献   

20.
The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号