首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Often in longitudinal data arising out of epidemiologic studies, measurement error in covariates and/or classification errors in binary responses may be present. The goal of the present work is to develop a random effects logistic regression model that corrects for the classification errors in binary responses and/or measurement error in covariates. The analysis is carried out under a Bayesian set up. Simulation study reveals the effect of ignoring measurement error and/or classification errors on the estimates of the regression coefficients.  相似文献   

2.
In recent years, zero-inflated count data models, such as zero-inflated Poisson (ZIP) models, are widely used as the count data with extra zeros are very common in many practical problems. In order to model the correlated count data which are either clustered or repeated and to assess the effects of continuous covariates or of time scales in a flexible way, a class of semiparametric mixed-effects models for zero-inflated count data is considered. In this article, we propose a fully Bayesian inference for such models based on a data augmentation scheme that reflects both random effects of covariates and mixture of zero-inflated distribution. A computational efficient MCMC method which combines the Gibbs sampler and M-H algorithm is implemented to obtain the estimate of the model parameters. Finally, a simulation study and a real example are used to illustrate the proposed methodologies.  相似文献   

3.
While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.  相似文献   

4.
This article proposes a Bayesian approach, which can simultaneously obtain the Bayesian estimates of unknown parameters and random effects, to analyze nonlinear reproductive dispersion mixed models (NRDMMs) for longitudinal data with nonignorable missing covariates and responses. The logistic regression model is employed to model the missing data mechanisms for missing covariates and responses. A hybrid sampling procedure combining the Gibber sampler and the Metropolis-Hastings algorithm is presented to draw observations from the conditional distributions. Because missing data mechanism is not testable, we develop the logarithm of the pseudo-marginal likelihood, deviance information criterion, the Bayes factor, and the pseudo-Bayes factor to compare several competing missing data mechanism models in the current considered NRDMMs with nonignorable missing covaraites and responses. Three simulation studies and a real example taken from the paediatric AIDS clinical trial group ACTG are used to illustrate the proposed methodologies. Empirical results show that our proposed methods are effective in selecting missing data mechanism models.  相似文献   

5.
For frequency counts, the situation of extra zeros often arises in biomedical applications. This is demonstrated with count data from a dental epidemiological study in Belo Horizonte (the Belo Horizonte caries prevention study) which evaluated various programmes for reducing caries. Extra zeros, however, violate the variance–mean relationship of the Poisson error structure. This extra-Poisson variation can easily be explained by a special mixture model, the zero-inflated Poisson (ZIP) model. On the basis of the ZIP model, a graphical device is presented which not only summarizes the mixing distribution but also provides visual information about the overall mean. This device can be exploited to evaluate and compare various groups. Ways are discussed to include covariates and to develop an extension of the conventional Poisson regression. Finally, a method to evaluate intervention effects on the basis of the ZIP regression model is described and applied to the data of the Belo Horizonte caries prevention study.  相似文献   

6.
In recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart.  相似文献   

7.
We analyze Poisson regression when covariates contain measurement errors and when multiple potential instrumental variables are available. Without empirical knowledge to select the most suitable variable as an instrument, we propose a novel model-averaging approach to resolve this issue. We prescribe an implementation and establish its optimality in terms of minimizing prediction risk. We further show that, as long as one model is correctly specified among all potential instrumental variable models, our method will lead to consistent prediction. The performance of our method is illustrated through simulations and a movie sales example.  相似文献   

8.
Most regression problems in practice require flexible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a unified approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with fixed effects, metrical covariates with non-linear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random field priors with different forms and degrees of smoothness. We applied the approach in several case-studies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications.  相似文献   

9.
Overdispersion has been a common phenomenon in count data and usually treated with the negative binomial model. This paper shows that measurement errors in covariates in general also lead to overdispersion on the observed data if the true data generating process is indeed the Poisson regression. This kind of overdispersion cannot be treated using the negative binomial model, as otherwise, biases will occur. To provide consistent estimates, we propose a new type of corrected score estimator assuming that the distribution of the latent variables is known. The consistency and asymptotic normality of the proposed estimator are established. Simulation results show that this estimator has good finite sample performance. We also illustrate that the Akaike information criterion and Bayesian information criterion work well for selecting the correct model if the true model is the errors-in-variables Poisson regression.  相似文献   

10.
ABSTRACT

Inflated data are prevalent in many situations and a variety of inflated models with extensions have been derived to fit data with excessive counts of some particular responses. The family of information criteria (IC) has been used to compare the fit of models for selection purposes. Yet despite the common use in statistical applications, there are not too many studies evaluating the performance of IC in inflated models. In this study, we studied the performance of IC for data with dual-inflated data. The new zero- and K-inflated Poisson (ZKIP) regression model and conventional inflated models including Poisson regression and zero-inflated Poisson (ZIP) regression were fitted for dual-inflated data and the performance of IC were compared. The effect of sample sizes and the proportions of inflated observations towards selection performance were also examined. The results suggest that the Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) are more accurate than the Akaike information criterion (AIC) in terms of model selection when the true model is simple (i.e. Poisson regression (POI)). For more complex models, such as ZIP and ZKIP, the AIC was consistently better than the BIC and CAIC, although it did not reach high levels of accuracy when sample size and the proportion of zero observations were small. The AIC tended to over-fit the data for the POI, whereas the BIC and CAIC tended to under-parameterize the data for ZIP and ZKIP. Therefore, it is desirable to study other model selection criteria for dual-inflated data with small sample size.  相似文献   

11.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

12.
Variable selection over a potentially large set of covariates in a linear model is quite popular. In the Bayesian context, common prior choices can lead to a posterior expectation of the regression coefficients that is a sparse (or nearly sparse) vector with a few nonzero components, those covariates that are most important. This article extends the “global‐local” shrinkage idea to a scenario where one wishes to model multiple response variables simultaneously. Here, we have developed a variable selection method for a K‐outcome model (multivariate regression) that identifies the most important covariates across all outcomes. The prior for all regression coefficients is a mean zero normal with coefficient‐specific variance term that consists of a predictor‐specific factor (shared local shrinkage parameter) and a model‐specific factor (global shrinkage term) that differs in each model. The performance of our modeling approach is evaluated through simulation studies and a data example.  相似文献   

13.
In this study, an evaluation of Bayesian hierarchical models is made based on simulation scenarios to compare single-stage and multi-stage Bayesian estimations. Simulated datasets of lung cancer disease counts for men aged 65 and older across 44 wards in the London Health Authority were analysed using a range of spatially structured random effect components. The goals of this study are to determine which of these single-stage models perform best given a certain simulating model, how estimation methods (single- vs. multi-stage) compare in yielding posterior estimates of fixed effects in the presence of spatially structured random effects, and finally which of two spatial prior models – the Leroux or ICAR model, perform best in a multi-stage context under different assumptions concerning spatial correlation. Among the fitted single-stage models without covariates, we found that when there is low amount of variability in the distribution of disease counts, the BYM model is relatively robust to misspecification in terms of DIC, while the Leroux model is the least robust to misspecification. When these models were fit to data generated from models with covariates, we found that when there was one set of covariates – either spatially correlated or non-spatially correlated, changing the values of the fixed coefficients affected the ability of either the Leroux or ICAR model to fit the data well in terms of DIC. When there were multiple sets of spatially correlated covariates in the simulating model, however, we could not distinguish the goodness of fit to the data between these single-stage models. We found that the multi-stage modelling process via the Leroux and ICAR models generally reduced the variance of the posterior estimated fixed effects for data generated from models with covariates and a UH term compared to analogous single-stage models. Finally, we found the multi-stage Leroux model compares favourably to the multi-stage ICAR model in terms of DIC. We conclude that the mutli-stage Leroux model should be seriously considered in applications of Bayesian disease mapping when an investigator desires to fit a model with both fixed effects and spatially structured random effects to Poisson count data.  相似文献   

14.
We propose a flexible model approach for the distribution of random effects when both response variables and covariates have non-ignorable missing values in a longitudinal study. A Bayesian approach is developed with a choice of nonparametric prior for the distribution of random effects. We apply the proposed method to a real data example from a national long-term survey by Statistics Canada. We also design simulation studies to further check the performance of the proposed approach. The result of simulation studies indicates that the proposed approach outperforms the conventional approach with normality assumption when the heterogeneity in random effects distribution is salient.  相似文献   

15.
In this article, we develop a Bayesian variable selection method that concerns selection of covariates in the Poisson change-point regression model with both discrete and continuous candidate covariates. Ranging from a null model with no selected covariates to a full model including all covariates, the Bayesian variable selection method searches the entire model space, estimates posterior inclusion probabilities of covariates, and obtains model averaged estimates on coefficients to covariates, while simultaneously estimating a time-varying baseline rate due to change-points. For posterior computation, the Metropolis-Hastings within partially collapsed Gibbs sampler is developed to efficiently fit the Poisson change-point regression model with variable selection. We illustrate the proposed method using simulated and real datasets.  相似文献   

16.
Count data with excess zeros are common in many biomedical and public health applications. The zero-inflated Poisson (ZIP) regression model has been widely used in practice to analyze such data. In this paper, we extend the classical ZIP regression framework to model count time series with excess zeros. A Markov regression model is presented and developed, and the partial likelihood is employed for statistical inference. Partial likelihood inference has been successfully applied in modeling time series where the conditional distribution of the response lies within the exponential family. Extending this approach to ZIP time series poses methodological and theoretical challenges, since the ZIP distribution is a mixture and therefore lies outside the exponential family. In the partial likelihood framework, we develop an EM algorithm to compute the maximum partial likelihood estimator (MPLE). We establish the asymptotic theory of the MPLE under mild regularity conditions and investigate its finite sample behavior in a simulation study. The performances of different partial-likelihood based model selection criteria are compared in the presence of model misspecification. Finally, we present an epidemiological application to illustrate the proposed methodology.  相似文献   

17.
Count data with excess zeros arises in many contexts. Here our concern is to develop a Bayesian analysis for the zero-inflated generalized Poisson (ZIGP) regression model to address this problem. This model provides a useful generalization of zero-inflated Poisson model since the generalized Poisson distribution is overdispersed/underdispersed relative to Poisson. Due to the complexity of the ZIGP model, Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the considered model. Additionally, some discussions on the model selection criteria are presented and a Bayesian case deletion influence diagnostics is investigated for the joint posterior distribution based on the Kullback–Leibler divergence. Finally, a simulation study and a psychological example are given to illustrate our methodology.  相似文献   

18.
19.
In this study, we combined a Poisson regression model with neural networks (neural network Poisson regression) to relax the traditional Poisson regression assumption of linearity of the Poisson mean as a function of covariates, while including it as a special case. In four simulated examples, we found that the neural network Poisson regression improved the performance of simple Poisson regression if the Poisson mean was nonlinearly related to covariates. We also illustrated the performance of the model in predicting five-year changes in cognitive scores, in association with age and education level; we found that the proposed approach had superior accuracy to conventional linear Poisson regression. As the interpretability of the neural networks is often difficult, its combination with conventional and more readily interpretable approaches under the generalized linear model can benefit applications in biomedicine.  相似文献   

20.
Count data with excess zeros often occurs in areas such as public health, epidemiology, psychology, sociology, engineering, and agriculture. Zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression are useful for modeling such data, but because of hierarchical study design or the data collection procedure, zero-inflation and correlation may occur simultaneously. To overcome these challenges ZIP or ZINB may still be used. In this paper, multilevel ZINB regression is used to overcome these problems. The method of parameter estimation is an expectation-maximization algorithm in conjunction with the penalized likelihood and restricted maximum likelihood estimates for variance components. Alternative modeling strategies, namely the ZIP distribution are also considered. An application of the proposed model is shown on decayed, missing, and filled teeth of children aged 12 years old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号