首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantile regression is a very important statistical tool for predictive modelling and risk assessment. For many applications, conditional quantile at different levels are estimated separately. Consequently the monotonicity of conditional quantiles can be violated when quantile regression curves cross each other. In this paper, we propose a new Bayesian multiple quantile regression based on heavy tailed distribution for non-crossing. We consider a linear quantile regression model for simultaneous Bayesian estimation of multiple quantiles based on a regularly varying assumptions. The numerical and competitive performance of the proposed method is illustrated by simulation.  相似文献   

2.
3.
把极端分位数所具有的行为特征应用到VaR的研究中,建立上海股市收益率的条件分位数回归模型,描述其在极端分位数下的变化趋势。同时选取适当的尾部模型,并在此基础之上应用外推法预测非常极端分位数下的条件VaR,并与直接由分位数回归模型预测的结果进行比较。结果表明:两种方法得到的结果变化趋势都是一致的,由外推法预测的结果相对小一些。  相似文献   

4.
A number of nonstationary models have been developed to estimate extreme events as function of covariates. A quantile regression (QR) model is a statistical approach intended to estimate and conduct inference about the conditional quantile functions. In this article, we focus on the simultaneous variable selection and parameter estimation through penalized quantile regression. We conducted a comparison of regularized Quantile Regression model with B-Splines in Bayesian framework. Regularization is based on penalty and aims to favor parsimonious model, especially in the case of large dimension space. The prior distributions related to the penalties are detailed. Five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) are considered with their equivalent expressions in Bayesian framework. The regularized quantile estimates are then compared to the maximum likelihood estimates with respect to the sample size. A Markov Chain Monte Carlo (MCMC) algorithms are developed for each hierarchical model to simulate the conditional posterior distribution of the quantiles. Results indicate that the SCAD0 and Lasso have the best performance for quantile estimation according to Relative Mean Biais (RMB) and the Relative Mean-Error (RME) criteria, especially in the case of heavy distributed errors. A case study of the annual maximum precipitation at Charlo, Eastern Canada, with the Pacific North Atlantic climate index as covariate is presented.  相似文献   

5.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

6.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

7.
ABSTRACT

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.  相似文献   

8.
Justification of heavy tail is an important open problem. A systematic approach is proposed to verify heavy tail in linear time series. It consists of three parts, each of which is guided by statistical tests. The analysis is supplemented by an application to ozone concentration. The methodology has the advantage that the threshold selection is data-driven. Simulations show that test results are accurate even under model misspecification. The power is good under two heavy-tailed alternatives. The test is invariant when the time series clusters at extreme level in the study of the max-autoregressive process. It also gives a preliminary measure of tail heaviness if the underlying process is heavy-tailed.  相似文献   

9.
Motivated by an entropy inequality, we propose for the first time a penalized profile likelihood method for simultaneously selecting significant variables and estimating unknown coefficients in multiple linear regression models in this article. The new method is robust to outliers or errors with heavy tails and works well even for error with infinite variance. Our proposed approach outperforms the adaptive lasso in both theory and practice. It is observed from the simulation studies that (i) the new approach possesses higher probability of correctly selecting the exact model than the least absolute deviation lasso and the adaptively penalized composite quantile regression approach and (ii) exact model selection via our proposed approach is robust regardless of the error distribution. An application to a real dataset is also provided.  相似文献   

10.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

11.
Quantile regression methods have been widely used in many research areas in recent years. However conventional estimation methods for quantile regression models do not guarantee that the estimated quantile curves will be non‐crossing. While there are various methods in the literature to deal with this problem, many of these methods force the model parameters to lie within a subset of the parameter space in order for the required monotonicity to be satisfied. Note that different methods may use different subspaces of the space of model parameters. This paper establishes a relationship between the monotonicity of the estimated conditional quantiles and the comonotonicity of the model parameters. We develope a novel quasi‐Bayesian method for parameter estimation which can be used to deal with both time series and independent statistical data. Simulation studies and an application to real financial returns show that the proposed method has the potential to be very useful in practice.  相似文献   

12.
The most popular approach in extreme value statistics is the modelling of threshold exceedances using the asymptotically motivated generalised Pareto distribution. This approach involves the selection of a high threshold above which the model fits the data well. Sometimes, few observations of a measurement process might be recorded in applications and so selecting a high quantile of the sample as the threshold leads to almost no exceedances. In this paper we propose extensions of the generalised Pareto distribution that incorporate an additional shape parameter while keeping the tail behaviour unaffected. The inclusion of this parameter offers additional structure for the main body of the distribution, improves the stability of the modified scale, tail index and return level estimates to threshold choice and allows a lower threshold to be selected. We illustrate the benefits of the proposed models with a simulation study and two case studies.  相似文献   

13.
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on independent and identically distributed samples. Our contribution is a two-step procedure for estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles are estimated nonparametrically using a local version of [Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.] regression quantile methodology. Next, these nonparametric quantile estimates are used as analogues of univariate order statistics in procedures for extreme quantile estimation. The performance of the method is evaluated for both heavy tailed distributions and distributions with a finite right endpoint using a small sample simulation study. A bootstrap procedure is developed to guide in the selection of an optimal local bandwidth. Finally the procedure is illustrated in two case studies.  相似文献   

14.
We propose a semiparametric estimator for single‐index models with censored responses due to detection limits. In the presence of left censoring, the mean function cannot be identified without any parametric distributional assumptions, but the quantile function is still identifiable at upper quantile levels. To avoid parametric distributional assumption, we propose to fit censored quantile regression and combine information across quantile levels to estimate the unknown smooth link function and the index parameter. Under some regularity conditions, we show that the estimated link function achieves the non‐parametric optimal convergence rate, and the estimated index parameter is asymptotically normal. The simulation study shows that the proposed estimator is competitive with the omniscient least squares estimator based on the latent uncensored responses for data with normal errors but much more efficient for heavy‐tailed data under light and moderate censoring. The practical value of the proposed method is demonstrated through the analysis of a human immunodeficiency virus antibody data set.  相似文献   

15.
Since the pioneering work by Koenker and Bassett [27], quantile regression models and its applications have become increasingly popular and important for research in many areas. In this paper, a random effects ordinal quantile regression model is proposed for analysis of longitudinal data with ordinal outcome of interest. An efficient Gibbs sampling algorithm was derived for fitting the model to the data based on a location-scale mixture representation of the skewed double-exponential distribution. The proposed approach is illustrated using simulated data and a real data example. This is the first work to discuss quantile regression for analysis of longitudinal data with ordinal outcome.  相似文献   

16.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.  相似文献   

17.
Abstract. In this paper, two non‐parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel‐based approaches. The second estimator involves sequential fitting by univariate local polynomial quantile regressions for each additive component with the other additive components replaced by the corresponding estimates from the first estimator. The purpose of the extra local averaging is to reduce the variance of the first estimator. We show that the second estimator achieves oracle efficiency in the sense that each estimated additive component has the same variance as in the case when all other additive components were known. Asymptotic properties are derived for both estimators under dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative empirical application of additive quantile models to ambulance travel times.  相似文献   

18.
In this paper, we extend the composite quantile regression (CQR) method to a single-index model. The unknown link function is estimated by local composite quantile regression and the parametric index is estimated through the linear composite quantile. It is shown that the proposed estimators are consistent and asymptotically normal. The simulation studies and real data applications are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

19.
A Bayesian approach is proposed for coefficient estimation in the Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems. Then, a stochastic search variable selection approach is proposed for Tobit quantile regression model based on g-prior. An expression for the hyperparameter g is proposed to calibrate the modified g-prior with a ridge parameter to the corresponding g-prior. Some possible extensions of the proposed approach are discussed, including the continuous and binary responses in quantile regression. The methods are illustrated using several simulation studies and a microarray study. The simulation studies and the microarray study indicate that the proposed approach performs well.  相似文献   

20.
Quantile regression is a technique to estimate conditional quantile curves. It provides a comprehensive picture of a response contingent on explanatory variables. In a flexible modeling framework, a specific form of the conditional quantile curve is not a priori fixed. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimator of the conditional quantile curve requires to balance between local curvature and stochastic variability. In this paper, we suggest a local model selection technique that provides an adaptive estimator of the conditional quantile regression curve at each design point. Theoretical results claim that the proposed adaptive procedure performs as good as an oracle which would minimize the local estimation risk for the problem at hand. We illustrate the performance of the procedure by an extensive simulation study and consider a couple of applications: to tail dependence analysis for the Hong Kong stock market and to analysis of the distributions of the risk factors of temperature dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号