首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Adaptive designs of clinical trials are ethical alternatives when the traditional randomization becomes ethically infeasible in desperate medical situations. However, such a design creates a dependency among trial data and its statistical analysis becomes more complex than the analysis for traditional randomized clinical trials. In this article, we examine adaptive designs with dichotomous responses from two treatments and extend some commonly used statistical methods for independent data. Under a regularity condition, the estimated odds ratio and its logarithm are shown to follow asymptotically normal distributions. Moreover, the ordinary goodness-of-fit test statistic for two-by-two contingency tables with dependent data is shown to be asymptotically chi-square distributed. We also discuss the consistency of maximum likelihood estimators of the unknown parameters for a wide class of adaptive designs.  相似文献   

3.
Background: Inferentially seamless studies are one of the best‐known adaptive trial designs. Statistical inference for these studies is a well‐studied problem. Regulatory guidance suggests that statistical issues associated with study conduct are not as well understood. Some of these issues are caused by the need for early pre‐specification of the phase III design and the absence of sponsor access to unblinded data. Before statisticians decide to choose a seamless IIb/III design for their programme, they should consider whether these pitfalls will be an issue for their programme. Methods: We consider four case studies. Each design met with varying degrees of success. We explore the reasons for this variation to identify characteristics of drug development programmes that lend themselves well to inferentially seamless trials and other characteristics that warn of difficulties. Results: Seamless studies require increased upfront investment and planning to enable the phase III design to be specified at the outset of phase II. Pivotal, inferentially seamless studies are unlikely to allow meaningful sponsor access to unblinded data before study completion. This limits a sponsor's ability to reflect new information in the phase III portion. Conclusions: When few clinical data have been gathered about a drug, phase II data will answer many unresolved questions. Committing to phase III plans and study designs before phase II begins introduces extra risk to drug development. However, seamless pivotal studies may be an attractive option when the clinical setting and development programme allow, for example, when revisiting dose selection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Ⅰ期临床试验的主要目的是探索药物毒性最大耐受剂量MTD,而MTD估计的准确与否将影响之后的Ⅱ期和Ⅲ期临床试验研究的结果.抗肿瘤药物Ⅰ期试验的特点是直接对病人进行试验,且样本量较小,这对构造估计精确度高并具有安全性保障要求的统计设计方法提出了挑战.回顾三种常用的Ⅰ期试验设计方法有:3+3设计、CRM设计和mTPI设计.3+3设计是应用较为广泛的传统方法,后两者是当前常用的贝叶斯自适应试验设计方法.通过大量模拟研究对三种方法从最优分配、安全性和估计MTD精确性三方面给以全面考察,并结合中国实际得出mTPI设计是比较适合推荐的Ⅰ期临床试验设计方法的结论.  相似文献   

5.
We consider outcome adaptive phase II or phase II/III trials to identify the best treatment for further development. Different from many other multi-arm multi-stage designs, we borrow approaches for the best arm identification in multi-armed bandit (MAB) approaches developed for machine learning and adapt them for clinical trial purposes. The best arm identification in MAB focuses on the error rate of identification at the end of the trial, but we are also interested in the cumulative benefit of trial patients, for example, the frequency of patients treated with the best treatment. In particular, we consider Top-Two Thompson Sampling (TTTS) and propose an acceleration approach for better performance in drug development scenarios in which the sample size is much smaller than that considered in machine learning applications. We also propose a variant of TTTS (TTTS2) which is simpler, easier for implementation, and has comparable performance in small sample settings. An extensive simulation study was conducted to evaluate the performance of the proposed approach in multiple typical scenarios in drug development.  相似文献   

6.
Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well‐known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph‐based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid‐trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

8.
Understanding the dose–response relationship is a key objective in Phase II clinical development. Yet, designing a dose‐ranging trial is a challenging task, as it requires identifying the therapeutic window and the shape of the dose–response curve for a new drug on the basis of a limited number of doses. Adaptive designs have been proposed as a solution to improve both quality and efficiency of Phase II trials as they give the possibility to select the dose to be tested as the trial goes. In this article, we present a ‘shapebased’ two‐stage adaptive trial design where the doses to be tested in the second stage are determined based on the correlation observed between efficacy of the doses tested in the first stage and a set of pre‐specified candidate dose–response profiles. At the end of the trial, the data are analyzed using the generalized MCP‐Mod approach in order to account for model uncertainty. A simulation study shows that this approach gives more precise estimates of a desired target dose (e.g. ED70) than a single‐stage (fixed‐dose) design and performs as well as a two‐stage D‐optimal design. We present the results of an adaptive model‐based dose‐ranging trial in multiple sclerosis that motivated this research and was conducted using the presented methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The study of HIV dynamics is one of the most important developments in recent AIDS research for understanding the pathogenesis of HIV-1 infection and antiviral treatment strategies. Currently a large number of AIDS clinical trials on HIV dynamics are in development worldwide. However, many design issues that arise from AIDS clinical trials have not been addressed. In this paper, we use a simulation-based approach to deal with design problems in Bayesian hierarchical nonlinear (mixed-effects) models. The underlying model characterizes the long-term viral dynamics with antiretroviral treatment where we directly incorporate drug susceptibility and exposure into a function of treatment efficacy. The Bayesian design method is investigated under the framework of hierarchical Bayesian (mixed-effects) models. We compare a finite number of feasible candidate designs numerically, which are currently used in AIDS clinical trials from different perspectives, and provide guidance on how a design might be chosen in practice.  相似文献   

11.
Phase II trials evaluate whether a new drug or a new therapy is worth further pursuing or certain treatments are feasible or not. A typical phase II is a single arm (open label) trial with a binary clinical endpoint (response to therapy). Although many oncology Phase II clinical trials are designed with a two-stage procedure, multi-stage design for phase II cancer clinical trials are now feasible due to increased capability of data capture. Such design adjusts for multiple analyses and variations in analysis time, and provides greater flexibility such as minimizing the number of patients treated on an ineffective therapy and identifying the minimum number of patients needed to evaluate whether the trial would warrant further development. In most of the NIH sponsored studies, the early stopping rule is determined so that the number of patients treated on an ineffective therapy is minimized. In pharmaceutical trials, it is also of importance to know as early as possible if the trial is highly promising and what is the likelihood the early conclusion can sustain. Although various methods are available to address these issues, practitioners often use disparate methods for addressing different issues and do not realize a single unified method exists. This article shows how to utilize a unified approach via a fully sequential procedure, the sequential conditional probability ratio test, to address the multiple needs of a phase II trial. We show the fully sequential program can be used to derive an optimized efficient multi-stage design for either a low activity or a high activity, to identify the minimum number of patients required to assess whether a new drug warrants further study and to adjust for unplanned interim analyses. In addition, we calculate a probability of discordance that the statistical test will conclude otherwise should the trial continue to the planned end that is usually at the sample size of a fixed sample design. This probability can be used to aid in decision making in a drug development program. All computations are based on exact binomial distribution.  相似文献   

12.
Traditional vaccine efficacy trials usually use fixed designs with fairly large sample sizes. Recruiting a large number of subjects requires longer time and higher costs. Furthermore, vaccine developers are more than ever facing the need to accelerate vaccine development to fulfill the public's medical needs. A possible approach to accelerate development is to use the method of dynamic borrowing of historical controls in clinical trials. In this paper, we evaluate the feasibility and the performance of this approach in vaccine development by retrospectively analyzing two real vaccine studies: a relatively small immunological trial (typical early phase study) and a large vaccine efficacy trial (typical Phase 3 study) assessing prophylactic human papillomavirus vaccine. Results are promising, particularly for early development immunological studies, where the adaptive design is feasible, and control of type I error is less relevant.  相似文献   

13.
Response‐adaptive randomisation (RAR) can considerably improve the chances of a successful treatment outcome for patients in a clinical trial by skewing the allocation probability towards better performing treatments as data accumulates. There is considerable interest in using RAR designs in drug development for rare diseases, where traditional designs are not either feasible or ethically questionable. In this paper, we discuss and address a major criticism levelled at RAR: namely, type I error inflation due to an unknown time trend over the course of the trial. The most common cause of this phenomenon is changes in the characteristics of recruited patients—referred to as patient drift. This is a realistic concern for clinical trials in rare diseases due to their lengthly accrual rate. We compute the type I error inflation as a function of the time trend magnitude to determine in which contexts the problem is most exacerbated. We then assess the ability of different correction methods to preserve type I error in these contexts and their performance in terms of other operating characteristics, including patient benefit and power. We make recommendations as to which correction methods are most suitable in the rare disease context for several RAR rules, differentiating between the 2‐armed and the multi‐armed case. We further propose a RAR design for multi‐armed clinical trials, which is computationally efficient and robust to several time trends considered.  相似文献   

14.
Implementation of adaptive clinical trial designs raises challenges with regard to the processes by which accruing trial data is analyzed, reviewed, and acted upon. In line with current monitoring conventions, it should be viewed that inappropriate knowledge of interim results can raise concerns regarding maintaining trial integrity and interpretability of results. Here we discuss issues related to these processes in adaptive trials, and point out distinctions versus other more familiar monitoring situations. One topic involves the composition of the group of individuals who will have access to interim results in order to recommend adaptations. We discuss operational models for data review by this group; one question addressed is whether in adaptive trials a role in this process for a representative of the study sponsor could at times be warranted, and might be justified if adequate protections are in place. Another issue involves whether adaptations made based upon interim data can convey to observers an amount of information about the results, which could rise to a level of concern. We consider whether different types of adaptations might be more or less problematic with regard to this issue, and recommend steps that might be considered to mitigate this concern.  相似文献   

15.
Adaptive designs are sometimes used in a phase III clinical trial with the goal of allocating a larger number of patients to the better treatment. In the present paper we use some adaptive designs in a two-treatment two-period crossover trial in the presence of possible carry-over effects, where the treatment responses are binary. We use some simple designs to choose between the possible treatment combinations AA, AB, BA or BB. The goal is to use the better treatment a larger proportion of times. We calculate the allocation proportions to the possible treatment combinations and their standard deviations. We also investigate related inferential problems, for which related asymptotics are derived. The proposed procedure is compared with a possible competitor. Finally we use real data sets to illustrate the applicability of our proposed design.  相似文献   

16.
One of the challenges in the design of confirmatory trials is to deal with uncertainties regarding the optimal target population for a novel drug. Adaptive enrichment designs (AED) which allow for a data-driven selection of one or more prespecified biomarker subpopulations at an interim analysis have been proposed in this setting but practical case studies of AEDs are still relatively rare. We present the design of an AED with a binary endpoint in the highly dynamic setting of cancer immunotherapy. The trial was initiated as a conventional trial in early triple-negative breast cancer but amended to an AED based on emerging data external to the trial suggesting that PD-L1 status could be a predictive biomarker. Operating characteristics are discussed including the concept of a minimal detectable difference, that is, the smallest observed treatment effect that would lead to a statistically significant result in at least one of the target populations at the interim or the final analysis, respectively, in the setting of AED.  相似文献   

17.
In an environment where (i) potential risks to subjects participating in clinical studies need to be managed carefully, (ii) trial costs are increasing, and (iii) there are limited research resources available, it is necessary to prioritize research projects and sometimes re-prioritize if early indications suggest that a trial has low probability of success. Futility designs allow this re-prioritization to take place. This paper reviews a number of possible futility methods available and presents a case study from a late-phase study of an HIV therapeutic, which utilized conditional power-based stopping thresholds. The two most challenging aspects of incorporating a futility interim analysis into a trial design are the selection of optimal stopping thresholds and the timing of the analysis, both of which require the balancing of various risks. The paper outlines a number of graphical aids that proved useful in explaining the statistical risks involved to the study team. Further, the paper outlines a decision analysis undertaken which combined expectations of drug performance with conditional power calculations in order to produce probabilities of different interim and final outcomes, and which ultimately led to the selection of the final stopping thresholds.  相似文献   

18.
In vitro permeation tests (IVPT) offer accurate and cost-effective development pathways for locally acting drugs, such as topical dermatological products. For assessment of bioequivalence, the FDA draft guidance on generic acyclovir 5% cream introduces a new experimental design, namely the single-dose, multiple-replicate per treatment group design, as IVPT pivotal study design. We examine the statistical properties of its hypothesis testing method—namely the mixed scaled average bioequivalence (MSABE). Meanwhile, some adaptive design features in clinical trials can help researchers make a decision earlier with fewer subjects or boost power, saving resources, while controlling the impact on family-wise error rate. Therefore, we incorporate MSABE in an adaptive design combining the group sequential design and sample size re-estimation. Simulation studies are conducted to study the passing rates of the proposed methods—both within and outside the average bioequivalence limits. We further consider modifications to the adaptive designs applied for IVPT BE trials, such as Bonferroni's adjustment and conditional power function. Finally, a case study with real data demonstrates the advantages of such adaptive methods.  相似文献   

19.
Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce.  相似文献   

20.
Flexible designs offer a large amount of flexibility in clinical trials with control of the type I error rate. This allows the combination of trials from different clinical phases of a drug development process. Such combinations require designs where hypotheses are selected and/or added at interim analysis without knowing the selection rule in advance so that both flexibility and multiplicity issues arise. The paper reviews the basic principles and some of the common methods for reaching flexibility while controlling the family-wise error rate in the strong sense. Flexible designs have been criticized because they may lead to different weights for the patients from the different stages when reassessing sample sizes. Analyzing the data in a conventional way avoids such unequal weighting but may inflate the multiple type I error rate. In cases where the conditional type I error rates of the new design (and conventional analysis) are below the conditional type I error rates of the initial design the conventional analysis may, however, be done without inflating the type I error rate. Focusing on a parallel group design with two treatments and a common control, we use this principle to investigate when we can select one treatment, reassess sample sizes and test the corresponding null hypotheses by the conventional level alpha z-test without compromising on the multiple type I error rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号