首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Molecularly targeted, genomic‐driven, and immunotherapy‐based clinical trials continue to be advanced for the treatment of relapse or refractory cancer patients, where the growth modulation index (GMI) is often considered a primary endpoint of treatment efficacy. However, there little literature is available that considers the trial design with GMI as the primary endpoint. In this article, we derived a sample size formula for the score test under a log‐linear model of the GMI. Study designs using the derived sample size formula are illustrated under a bivariate exponential model, the Weibull frailty model, and the generalized treatment effect size. The proposed designs provide sound statistical methods for a single‐arm phase II trial with GMI as the primary endpoint.  相似文献   

2.
In planning a study, the choice of sample size may depend on a variance value based on speculation or obtained from an earlier study. Scientists may wish to use an internal pilot design to protect themselves against an incorrect choice of variance. Such a design involves collecting a portion of the originally planned sample and using it to produce a new variance estimate. This leads to a new power analysis and increasing or decreasing sample size. For any general linear univariate model, with fixed predictors and Gaussian errors, we prove that the uncorrected fixed sample F-statistic is the likelihood ratio test statistic. However, the statistic does not follow an F distribution. Ignoring the discrepancy may inflate test size. We derive and evaluate properties of the components of the likelihood ratio test statistic in order to characterize and quantify the bias. Most notably, the fixed sample size variance estimate becomes biased downward. The bias may inflate test size for any hypothesis test, even if the parameter being tested was not involved in the sample size re-estimation. Furthermore, using fixed sample size methods may create biased confidence intervals for secondary parameters and the variance estimate.  相似文献   

3.
Traditionally, in clinical development plan, phase II trials are relatively small and can be expected to result in a large degree of uncertainty in the estimates based on which Phase III trials are planned. Phase II trials are also to explore appropriate primary efficacy endpoint(s) or patient populations. When the biology of the disease and pathogenesis of disease progression are well understood, the phase II and phase III studies may be performed in the same patient population with the same primary endpoint, e.g. efficacy measured by HbA1c in non-insulin dependent diabetes mellitus trials with treatment duration of at least three months. In the disease areas that molecular pathways are not well established or the clinical outcome endpoint may not be observed in a short-term study, e.g. mortality in cancer or AIDS trials, the treatment effect may be postulated through use of intermediate surrogate endpoint in phase II trials. However, in many cases, we generally explore the appropriate clinical endpoint in the phase II trials. An important question is how much of the effect observed in the surrogate endpoint in the phase II study can be translated into the clinical effect in the phase III trial. Another question is how much of the uncertainty remains in phase III trials. In this work, we study the utility of adaptation by design (not by statistical test) in the sense of adapting the phase II information for planning the phase III trials. That is, we investigate the impact of using various phase II effect size estimates on the sample size planning for phase III trials. In general, if the point estimate of the phase II trial is used for planning, it is advisable to size the phase III trial by choosing a smaller alpha level or a higher power level. The adaptation via using the lower limit of the one standard deviation confidence interval from the phase II trial appears to be a reasonable choice since it balances well between the empirical power of the launched trials and the proportion of trials not launched if a threshold lower than the true effect size of phase III trial can be chosen for determining whether the phase III trial is to be launched.  相似文献   

4.
In some exceptional circumstances, as in very rare diseases, nonrandomized one‐arm trials are the sole source of evidence to demonstrate efficacy and safety of a new treatment. The design of such studies needs a sound methodological approach in order to provide reliable information, and the determination of the appropriate sample size still represents a critical step of this planning process. As, to our knowledge, no method exists for sample size calculation in one‐arm trials with a recurrent event endpoint, we propose here a closed sample size formula. It is derived assuming a mixed Poisson process, and it is based on the asymptotic distribution of the one‐sample robust nonparametric test recently developed for the analysis of recurrent events data. The validity of this formula in managing a situation with heterogeneity of event rates, both in time and between patients, and time‐varying treatment effect was demonstrated with exhaustive simulation studies. Moreover, although the method requires the specification of a process for events generation, it seems to be robust under erroneous definition of this process, provided that the number of events at the end of the study is similar to the one assumed in the planning phase. The motivating clinical context is represented by a nonrandomized one‐arm study on gene therapy in a very rare immunodeficiency in children (ADA‐SCID), where a major endpoint is the recurrence of severe infections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Adaptive trial methodology for multiarmed trials and enrichment designs has been extensively discussed in the past. A general principle to construct test procedures that control the family‐wise Type I error rate in the strong sense is based on combination tests within a closed test. Using survival data, a problem arises when using information of patients for adaptive decision making, which are under risk at interim. With the currently available testing procedures, either no testing of hypotheses in interim analyses is possible or there are restrictions on the interim data that can be used in the adaptation decisions as, essentially, only the interim test statistics of the primary endpoint may be used. We propose a general adaptive testing procedure, covering multiarmed and enrichment designs, which does not have these restrictions. An important application are clinical trials, where short‐term surrogate endpoints are used as basis for trial adaptations, and we illustrate how such trials can be designed. We propose statistical models to assess the impact of effect sizes, the correlation structure between the short‐term and the primary endpoint, the sample size, the timing of interim analyses, and the selection rule on the operating characteristics.  相似文献   

6.
A 3‐arm trial design that includes an experimental treatment, an active reference treatment, and a placebo is useful for assessing the noninferiority of an experimental treatment. The inclusion of a placebo arm enables the assessment of assay sensitivity and internal validation, in addition to the testing of the noninferiority of the experimental treatment compared with the reference treatment. In 3‐arm noninferiority trials, various statistical test procedures have been considered to evaluate the following 3 hypotheses: (i) superiority of the experimental treatment over the placebo, (ii) superiority of the reference treatment over the placebo, and (iii) noninferiority of the experimental treatment compared with the reference treatment. However, hypothesis (ii) can be insufficient and may not accurately assess the assay sensitivity for the noninferiority of the experimental treatment compared with the reference treatment. Thus, demonstrating that the superiority of the reference treatment over the placebo is greater than the noninferiority margin (the nonsuperiority of the reference treatment compared with the placebo) can be necessary. Here, we propose log‐rank statistical procedures for evaluating data obtained from 3‐arm noninferiority trials to assess assay sensitivity with a prespecified margin Δ. In addition, we derive the approximate sample size and optimal allocation required to minimize the total sample size and that of the placebo treatment sample size, hierarchically.  相似文献   

7.
Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well‐known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph‐based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid‐trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a two‐stage design for a single arm clinical trial with an early stopping rule for futility. This design employs different endpoints to assess early stopping and efficacy. The early stopping rule is based on a criteria determined more quickly than that for efficacy. These separate criteria are also nested in the sense that efficacy is a special case of, but usually not identical to, the early stopping endpoint. The design readily allows for planning in terms of statistical significance, power, expected sample size, and expected duration. This method is illustrated with a phase II design comparing rates of disease progression in elderly patients treated for lung cancer to rates found using a historical control. In this example, the early stopping rule is based on the number of patients who exhibit progression‐free survival (PFS) at 2 months post treatment follow‐up. Efficacy is judged by the number of patients who have PFS at 6 months. We demonstrate our design has expected sample size and power comparable with the Simon two‐stage design but exhibits shorter expected duration under a range of useful parameter values.  相似文献   

9.
Sampling cost is a crucial factor in sample size planning, particularly when the treatment group is more expensive than the control group. To either minimize the total cost or maximize the statistical power of the test, we used the distribution-free Wilcoxon–Mann–Whitney test for two independent samples and the van Elteren test for randomized block design, respectively. We then developed approximate sample size formulas when the distribution of data is abnormal and/or unknown. This study derived the optimal sample size allocation ratio for a given statistical power by considering the cost constraints, so that the resulting sample sizes could minimize either the total cost or the total sample size. Moreover, for a given total cost, the optimal sample size allocation is recommended to maximize the statistical power of the test. The proposed formula is not only innovative, but also quick and easy. We also applied real data from a clinical trial to illustrate how to choose the sample size for a randomized two-block design. For nonparametric methods, no existing commercial software for sample size planning has considered the cost factor, and therefore the proposed methods can provide important insights related to the impact of cost constraints.  相似文献   

10.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

11.
In this paper, we propose a design that uses a short‐term endpoint for accelerated approval at interim analysis and a long‐term endpoint for full approval at final analysis with sample size adaptation based on the long‐term endpoint. Two sample size adaptation rules are compared: an adaptation rule to maintain the conditional power at a prespecified level and a step function type adaptation rule to better address the bias issue. Three testing procedures are proposed: alpha splitting between the two endpoints; alpha exhaustive between the endpoints; and alpha exhaustive with improved critical value based on correlation. Family‐wise error rate is proved to be strongly controlled for the two endpoints, sample size adaptation, and two analysis time points with the proposed designs. We show that using alpha exhaustive designs greatly improve the power when both endpoints are effective, and the power difference between the two adaptation rules is minimal. The proposed design can be extended to more general settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

13.
A challenge arising in cancer immunotherapy trial design is the presence of a delayed treatment effect wherein the proportional hazard assumption no longer holds true. As a result, a traditional survival trial design based on the standard log‐rank test, which ignores the delayed treatment effect, will lead to substantial loss of statistical power. Recently, a piecewise weighted log‐rank test is proposed to incorporate the delayed treatment effect into consideration of the trial design. However, because the sample size formula was derived under a sequence of local alternative hypotheses, it results in an underestimated sample size when the hazard ratio is relatively small for a balanced trial design and an inaccurate sample size estimation for an unbalanced design. In this article, we derived a new sample size formula under a fixed alternative hypothesis for the delayed treatment effect model. Simulation results show that the new formula provides accurate sample size estimation for both balanced and unbalanced designs.  相似文献   

14.
For binary endpoints, the required sample size depends not only on the known values of significance level, power and clinically relevant difference but also on the overall event rate. However, the overall event rate may vary considerably between studies and, as a consequence, the assumptions made in the planning phase on this nuisance parameter are to a great extent uncertain. The internal pilot study design is an appealing strategy to deal with this problem. Here, the overall event probability is estimated during the ongoing trial based on the pooled data of both treatment groups and, if necessary, the sample size is adjusted accordingly. From a regulatory viewpoint, besides preserving blindness it is required that eventual consequences for the Type I error rate should be explained. We present analytical computations of the actual Type I error rate for the internal pilot study design with binary endpoints and compare them with the actual level of the chi‐square test for the fixed sample size design. A method is given that permits control of the specified significance level for the chi‐square test under blinded sample size recalculation. Furthermore, the properties of the procedure with respect to power and expected sample size are assessed. Throughout the paper, both the situation of equal sample size per group and unequal allocation ratio are considered. The method is illustrated with application to a clinical trial in depression. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   

15.
We investigate multiple features of response adaptive randomization (RAR) in the context of a multiple arm randomized trial with control, where the primary goal is the identification of the best arm for use in a broader patient population. We maintain constant control allocation and vary the length of time until RAR is started, interim frequency, the underlying quantity used to calculate the randomization probabilities, and a threshold resulting in temporary arm dropping. We evaluate the designs on five metrics measuring benefit to the internal trial population, the future external population, and statistical estimation. Our results indicate these features have minimal interaction within the space explored, with preference for earlier activation of RAR, more frequent interim analyses, randomizing in proportion to the probability each arm is the best, and aggressive thresholding for temporarily dropping arms. The results illustrate useful principles for maximizing the benefit of RAR in practice.  相似文献   

16.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented.  相似文献   

17.
The Committee for Medicinal Products for Human Use (CHMP) is currently preparing a guideline on 'methodological issues in confirmatory clinical trials with flexible design and analysis plan'. PSI (Statisticians in the Pharmaceutical Industry) sponsored a meeting of pharmaceutical statisticians with an interest in the area to share experiences and identify potential opportunities for adaptive designs in late-phase clinical drug development. This article outlines the issues raised, resulting discussions and consensus views reached. Adaptive designs have potential utility in late-phase clinical development. Sample size re-estimation seems to be valuable and widely accepted, but should be made independent of the observed treatment effect where possible. Where unblinding is necessary, careful consideration needs to be given to preserving the integrity of the trial. An area where adaptive designs can be particularly beneficial is to allow dose selection in pivotal trials via adding/dropping treatment arms; for example, combining phase II and III of the drug development program. The more adaptations made during a late-phase clinical trial, the less likely that the clinical trial would be considered as a confirmatory trial. In all cases it would be advisable to consult with regulatory agencies at the protocol design stage. All involved should remain open to scientifically valid opportunities to improve drug development.  相似文献   

18.
In group sequential clinical trials, there are several sample size re-estimation methods proposed in the literature that allow for change of sample size at the interim analysis. Most of these methods are based on either the conditional error function or the interim effect size. Our simulation studies compared the operating characteristics of three commonly used sample size re-estimation methods, Chen et al. (2004), Cui et al. (1999), and Muller and Schafer (2001). Gao et al. (2008) extended the CDL method and provided an analytical expression of lower and upper threshold of conditional power where the type I error is preserved. Recently, Mehta and Pocock (2010) extensively discussed that the real benefit of the adaptive approach is to invest the sample size resources in stages and increasing the sample size only if the interim results are in the so called “promising zone” which they define in their article. We incorporated this concept in our simulations while comparing the three methods. To test the robustness of these methods, we explored the impact of incorrect variance assumption on the operating characteristics. We found that the operating characteristics of the three methods are very comparable. In addition, the concept of promising zone, as suggested by MP, gives the desired power and smaller average sample size, and thus increases the efficiency of the trial design.  相似文献   

19.
In clinical trials with binary endpoints, the required sample size does not depend only on the specified type I error rate, the desired power and the treatment effect but also on the overall event rate which, however, is usually uncertain. The internal pilot study design has been proposed to overcome this difficulty. Here, nuisance parameters required for sample size calculation are re-estimated during the ongoing trial and the sample size is recalculated accordingly. We performed extensive simulation studies to investigate the characteristics of the internal pilot study design for two-group superiority trials where the treatment effect is captured by the relative risk. As the performance of the sample size recalculation procedure crucially depends on the accuracy of the applied sample size formula, we firstly explored the precision of three approximate sample size formulae proposed in the literature for this situation. It turned out that the unequal variance asymptotic normal formula outperforms the other two, especially in case of unbalanced sample size allocation. Using this formula for sample size recalculation in the internal pilot study design assures that the desired power is achieved even if the overall rate is mis-specified in the planning phase. The maximum inflation of the type I error rate observed for the internal pilot study design is small and lies below the maximum excess that occurred for the fixed sample size design.  相似文献   

20.
It is challenging to estimate the statistical power when a complicated testing strategy is used to adjust for the type-I error for multiple comparisons in a clinical trial. In this paper, we use the Bonferroni Inequality to estimate the lower bound of the statistical power assuming that test statistics are approximately normally distributed and the correlation structure among test statistics is unknown or only partially known. The method was applied to the design of a clinical study for sample size and statistical power estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号