首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce non-centered and partially non-centered MCMC algorithms for stochastic epidemic models. Centered algorithms previously considered in the literature perform adequately well for small data sets. However, due to the high dependence inherent in the models between the missing data and the parameters, the performance of the centered algorithms gets appreciably worse when larger data sets are considered. Therefore non-centered and partially non-centered algorithms are introduced and are shown to out perform the existing centered algorithms.  相似文献   

2.
Bayesian inference for partially observed stochastic epidemics   总被引:4,自引:0,他引:4  
The analysis of infectious disease data is usually complicated by the fact that real life epidemics are only partially observed. In particular, data concerning the process of infection are seldom available. Consequently, standard statistical techniques can become too complicated to implement effectively. In this paper Markov chain Monte Carlo methods are used to make inferences about the missing data as well as the unknown parameters of interest in a Bayesian framework. The methods are applied to real life data from disease outbreaks.  相似文献   

3.
This work was motivated by a real problem of comparing binary diagnostic tests based upon a gold standard, where the collected data showed that the large majority of classifications were incomplete and the feedback received from the medical doctors allowed us to consider the missingness as non-informative. Taking into account the degree of data incompleteness, we used a Bayesian approach via MCMC methods for drawing inferences of interest on accuracy measures. Its direct implementation by well-known software demonstrated serious problems of chain convergence. The difficulties were overcome by the proposal of a simple, efficient and easily adaptable data augmentation algorithm, performed through an ad hoc computer program.  相似文献   

4.
Methods for the analysis of data on the incidence of an infectious disease are reviewed, with an emphasis on important objectives that such analyses should address and identifying areas where further work is required. Recent statistical work has adapted methods for constructing estimating functions from martingale theory, methods of data augmentation and methods developed for studying the human immunodeficiency virus–acquired immune deficiency syndrome epidemic. Infectious disease data seem particularly suited to analysis by Markov chain Monte Carlo methods. Epidemic modellers have recently made substantial progress in allowing for community structure and heterogeneity among individuals when studying the requirements for preventing major epidemics. This has stimulated interest in making statistical inferences about crucial parameters from infectious disease data for such community settings.  相似文献   

5.
Markov chain Monte Carlo (MCMC) algorithms have revolutionized Bayesian practice. In their simplest form (i.e., when parameters are updated one at a time) they are, however, often slow to converge when applied to high-dimensional statistical models. A remedy for this problem is to block the parameters into groups, which are then updated simultaneously using either a Gibbs or Metropolis-Hastings step. In this paper we construct several (partially and fully blocked) MCMC algorithms for minimizing the autocorrelation in MCMC samples arising from important classes of longitudinal data models. We exploit an identity used by Chib (1995) in the context of Bayes factor computation to show how the parameters in a general linear mixed model may be updated in a single block, improving convergence and producing essentially independent draws from the posterior of the parameters of interest. We also investigate the value of blocking in non-Gaussian mixed models, as well as in a class of binary response data longitudinal models. We illustrate the approaches in detail with three real-data examples.  相似文献   

6.
One form of data collected in the study of infectious diseases is on the transmission of a disease within households. We consider a model which allows the rate of disease transmission to vary between households. A Bayesian hierarchical approach to fitting the model is proposed and is implemented by the Metropolis–Hastings algorithm, a standard Markov chain Monte Carlo (MCMC) method. Results are presented for both simulated epidemic chain data and the Providence measles data, illustrating the potential that MCMC methods have to dealing with heterogeneity in infectious disease transmission.  相似文献   

7.
Penalized likelihood inference in extreme value analyses   总被引:1,自引:0,他引:1  
Models for extreme values are usually based on detailed asymptotic argument, for which strong ergodic assumptions such as stationarity, or prescribed perturbations from stationarity, are required. In most applications of extreme value modelling such assumptions are not satisfied, but the type of departure from stationarity is either unknown or complex, making asymptotic calculations unfeasible. This has led to various approaches in which standard extreme value models are used as building blocks for conditional or local behaviour of processes, with more general statistical techniques being used at the modelling stage to handle the non-stationarity. This paper presents another approach in this direction based on penalized likelihood. There are some advantages to this particular approach: the method has a simple interpretation; computations for estimation are relatively straightforward using standard algorithms; and a simple reinterpretation of the model enables broader inferences, such as confidence intervals, to be obtained using MCMC methodology. Methodological details together with applications to both athletics and environmental data are given.  相似文献   

8.
Bayesian inference for pairwise interacting point processes   总被引:1,自引:0,他引:1  
Pairwise interacting point processes are commonly used to model spatial point patterns. To perform inference, the established frequentist methods can produce good point estimates when the interaction in the data is moderate, but some methods may produce severely biased estimates when the interaction in strong. Furthermore, because the sampling distributions of the estimates are unclear, interval estimates are typically obtained by parametric bootstrap methods. In the current setting however, the behavior of such estimates is not well understood. In this article we propose Bayesian methods for obtaining inferences in pairwise interacting point processes. The requisite application of Markov chain Monte Carlo (MCMC) techniques is complicated by an intractable function of the parameters in the likelihood. The acceptance probability in a Metropolis-Hastings algorithm involves the ratio of two likelihoods evaluated at differing parameter values. The intractable functions do not cancel, and hence an intractable ratio r must be estimated within each iteration of a Metropolis-Hastings sampler. We propose the use of importance sampling techniques within MCMC to address this problem. While r may be estimated by other methods, these, in general, are not readily applied in a Bayesian setting. We demonstrate the validity of our importance sampling approach with a small simulation study. Finally, we analyze the Swedish pine sapling dataset (Strand 1972) and contrast the results with those in the literature.  相似文献   

9.
We evaluate MCMC sampling schemes for a variety of link functions in generalized linear models with Dirichlet process random effects. First, we find that there is a large amount of variability in the performance of MCMC algorithms, with the slice sampler typically being less desirable than either a Kolmogorov–Smirnov mixture representation or a Metropolis–Hastings algorithm. Second, in fitting the Dirichlet process, dealing with the precision parameter has troubled model specifications in the past. Here we find that incorporating this parameter into the MCMC sampling scheme is not only computationally feasible, but also results in a more robust set of estimates, in that they are marginalized-over rather than conditioned-upon. Applications are provided with social science problems in areas where the data can be difficult to model, and we find that the nonparametric nature of the Dirichlet process priors for the random effects leads to improved analyses with more reasonable inferences.  相似文献   

10.
This paper extends stochastic conditional duration (SCD) models for financial transaction data to allow for correlation between error processes and innovations of observed duration process and latent log duration process. Suitable algorithms of Markov Chain Monte Carlo (MCMC) are developed to fit the resulting SCD models under various distributional assumptions about the innovation of the measurement equation. Unlike the estimation methods commonly used to estimate the SCD models in the literature, we work with the original specification of the model, without subjecting the observation equation to a logarithmic transformation. Results of simulation studies suggest that our proposed models and corresponding estimation methodology perform quite well. We also apply an auxiliary particle filter technique to construct one-step-ahead in-sample and out-of-sample duration forecasts of the fitted models. Applications to the IBM transaction data allow comparison of our models and methods to those existing in the literature.  相似文献   

11.
We investigate the use of Markov Chain Monte Carlo (MCMC) methods to attack classical ciphers. MCMC has previously been used to break simple substitution ciphers. Here, we extend this approach to transposition ciphers and to substitution-plus-transposition ciphers. Our algorithms run quickly and perform fairly well even for key lengths as high as 40.  相似文献   

12.
Data augmentation is required for the implementation of many Markov chain Monte Carlo (MCMC) algorithms. The inclusion of augmented data can often lead to conditional distributions from well‐known probability distributions for some of the parameters in the model. In such cases, collapsing (integrating out parameters) has been shown to improve the performance of MCMC algorithms. We show how integrating out the infection rate parameter in epidemic models leads to efficient MCMC algorithms for two very different epidemic scenarios, final outcome data from a multitype SIR epidemic and longitudinal data from a spatial SI epidemic. The resulting MCMC algorithms give fresh insight into real‐life epidemic data sets.  相似文献   

13.
Abstract.  Much recent methodological progress in the analysis of infectious disease data has been due to Markov chain Monte Carlo (MCMC) methodology. In this paper, it is illustrated that rejection sampling can also be applied to a family of inference problems in the context of epidemic models, avoiding the issues of convergence associated with MCMC methods. Specifically, we consider models for epidemic data arising from a population divided into households. The models allow individuals to be potentially infected both from outside and from within the household. We develop methodology for selection between competing models via the computation of Bayes factors. We also demonstrate how an initial sample can be used to adjust the algorithm and improve efficiency. The data are assumed to consist of the final numbers ultimately infected within a sample of households in some community. The methods are applied to data taken from outbreaks of influenza.  相似文献   

14.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

15.
On Block Updating in Markov Random Field Models for Disease Mapping   总被引:3,自引:0,他引:3  
Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single-site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non-standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields ( Rue, 2001 ). By comparison, Monte Carlo estimates based on single-site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.  相似文献   

16.
Summary. Models for multiple-test screening data generally require the assumption that the tests are independent conditional on disease state. This assumption may be unreasonable, especially when the biological basis of the tests is the same. We propose a model that allows for correlation between two diagnostic test results. Since models that incorporate test correlation involve more parameters than can be estimated with the available data, posterior inferences will depend more heavily on prior distributions, even with large sample sizes. If we have reasonably accurate information about one of the two screening tests (perhaps the standard currently used test) or the prevalences of the populations tested, accurate inferences about all the parameters, including the test correlation, are possible. We present a model for evaluating dependent diagnostic tests and analyse real and simulated data sets. Our analysis shows that, when the tests are correlated, a model that assumes conditional independence can perform very poorly. We recommend that, if the tests are only moderately accurate and measure the same biological responses, researchers use the dependence model for their analyses.  相似文献   

17.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

18.
Abstract. In this article, we estimate the parameters of a simple random network and a stochastic epidemic on that network using data consisting of recovery times of infected hosts. The SEIR epidemic model we fit has exponentially distributed transmission times with Gamma distributed exposed and infectious periods on a network where every edge exists with the same probability, independent of other edges. We employ a Bayesian framework and Markov chain Monte Carlo (MCMC) integration to make estimates of the joint posterior distribution of the model parameters. We discuss the accuracy of the parameter estimates under various prior assumptions and show that it is possible in many scientifically interesting cases to accurately recover the parameters. We demonstrate our approach by studying a measles outbreak in Hagelloch, Germany, in 1861 consisting of 188 affected individuals. We provide an R package to carry out these analyses, which is available publicly on the Comprehensive R Archive Network.  相似文献   

19.
The design of infectious disease studies has received little attention because they are generally viewed as observational studies. That is, epidemic and endemic disease transmission happens and we observe it. We argue here that statistical design often provides useful guidance for such studies with regard to type of data and the size of the data set to be collected. It is shown that data on disease transmission in part of the community enables the estimation of central parameters and it is possible to compute the sample size required to make inferences with a desired precision. We illustrate this for data on disease transmission in a single community of uniformly mixing individuals and for data on outbreak sizes in households. Data on disease transmission is usually incomplete and this creates an identifiability problem for certain parameters of multitype epidemic models. We identify designs that can overcome this problem for the important objective of estimating parameters that help to assess the effectiveness of a vaccine. With disease transmission in animal groups there is greater scope for conducting planned experiments and we explore some possibilities for such experiments. The topic is largely unexplored and numerous open research problems in the area of statistical design of infectious disease data are mentioned.  相似文献   

20.
Panel studies are statistical studies in which two or more variables are observed for two or more subjects at two or more points In time. Cross- lagged panel studies are those studies in which the variables are continuous and divide naturally into two effects or impacts of each set of variables on the other. If a regression approach is taken5 a regression structure Is formulated for the cross-lagged models This structure may assume that the regression parameters are homogeneous across waves and across subpopulations. Under such assumptions the methods of multivariate regression analysis can be adapted to make inferences about the parameters. These inferences are limited to the degree that homogeneity of the parameters Is 'supported b}T the data. We consider the problem of testing the hypotheses of homogeneity and consider the problem of making statistical inferences about the cross-effects should there be evidence against one of the homogeneity assumptions. We demonstrate the methods developed by applying then to two panel data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号