首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A stochastic epidemic model with several kinds of susceptible is used to analyse temporal disease outbreak data from a Bayesian perspective. Prior distributions are used to model uncertainty in the actual numbers of susceptibles initially present. The posterior distribution of the parameters of the model is explored via Markov chain Monte Carlo methods. The methods are illustrated using two datasets, and the results are compared where possible to results obtained by previous analyses.  相似文献   

2.
Summary. A Bayesian method for segmenting weed and crop textures is described and implemented. The work forms part of a project to identify weeds and crops in images so that selective crop spraying can be carried out. An image is subdivided into blocks and each block is modelled as a single texture. The number of different textures in the image is assumed unknown. A hierarchical Bayesian procedure is used where the texture labels have a Potts model (colour Ising Markov random field) prior and the pixels within a block are distributed according to a Gaussian Markov random field, with the parameters dependent on the type of texture. We simulate from the posterior distribution by using a reversible jump Metropolis–Hastings algorithm, where the number of different texture components is allowed to vary. The methodology is applied to a simulated image and then we carry out texture segmentation on the weed and crop images that motivated the work.  相似文献   

3.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

4.
Summary.  A stochastic discrete time version of the susceptible–infected–recovered model for infectious diseases is developed. Disease is transmitted within and between communities when infected and susceptible individuals interact. Markov chain Monte Carlo methods are used to make inference about these unobserved populations and the unknown parameters of interest. The algorithm is designed specifically for modelling time series of reported measles cases although it can be adapted for other infectious diseases with permanent immunity. The application to observed measles incidence series motivates extensions to incorporate age structure as well as spatial epidemic coupling between communities.  相似文献   

5.
Summary.  Phage display is a biological process that is used to screen random peptide libraries for ligands that bind to a target of interest with high affinity. On the basis of a count data set from an innovative multistage phage display experiment, we propose a class of Bayesian mixture models to cluster peptide counts into three groups that exhibit different display patterns across stages. Among the three groups, the investigators are particularly interested in that with an ascending display pattern in the counts, which implies that the peptides are likely to bind to the target with strong affinity. We apply a Bayesian false discovery rate approach to identify the peptides with the strongest affinity within the group. A list of peptides is obtained, among which important ones with meaningful functions are further validated by biologists. To examine the performance of the Bayesian model, we conduct a simulation study and obtain desirable results.  相似文献   

6.
Markov chain Monte Carlo (MCMC) methods, including the Gibbs sampler and the Metropolis–Hastings algorithm, are very commonly used in Bayesian statistics for sampling from complicated, high-dimensional posterior distributions. A continuing source of uncertainty is how long such a sampler must be run in order to converge approximately to its target stationary distribution. A method has previously been developed to compute rigorous theoretical upper bounds on the number of iterations required to achieve a specified degree of convergence in total variation distance by verifying drift and minorization conditions. We propose the use of auxiliary simulations to estimate the numerical values needed in this theorem. Our simulation method makes it possible to compute quantitative convergence bounds for models for which the requisite analytical computations would be prohibitively difficult or impossible. On the other hand, although our method appears to perform well in our example problems, it cannot provide the guarantees offered by analytical proof.  相似文献   

7.
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.  相似文献   

8.
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a modified Weibull distribution based on a complete sample. While maximum-likelihood estimation (MLE) is the most used method for parameter estimation, MCMC has recently emerged as a good alternative. When applied to parameter estimation, MCMC methods have been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. Details of applying MCMC to parameter estimation for the modified Weibull model are elaborated and a numerical example is presented to illustrate the methods of inference discussed in this paper. To compare MCMC with MLE, a simulation study is provided, and the differences between the estimates obtained by the two algorithms are examined.  相似文献   

9.
Summary.  The paper is concerned with new methodology for statistical inference for final outcome infectious disease data using certain structured population stochastic epidemic models. A major obstacle to inference for such models is that the likelihood is both analytically and numerically intractable. The approach that is taken here is to impute missing information in the form of a random graph that describes the potential infectious contacts between individuals. This level of imputation overcomes various constraints of existing methodologies and yields more detailed information about the spread of disease. The methods are illustrated with both real and test data.  相似文献   

10.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

11.
Bayesian inference for partially observed stochastic epidemics   总被引:4,自引:0,他引:4  
The analysis of infectious disease data is usually complicated by the fact that real life epidemics are only partially observed. In particular, data concerning the process of infection are seldom available. Consequently, standard statistical techniques can become too complicated to implement effectively. In this paper Markov chain Monte Carlo methods are used to make inferences about the missing data as well as the unknown parameters of interest in a Bayesian framework. The methods are applied to real life data from disease outbreaks.  相似文献   

12.
There are two conceptually distinct tasks in Markov chain Monte Carlo (MCMC): a sampler is designed for simulating a Markov chain and then an estimator is constructed on the Markov chain for computing integrals and expectations. In this article, we aim to address the second task by extending the likelihood approach of Kong et al. for Monte Carlo integration. We consider a general Markov chain scheme and use partial likelihood for estimation. Basically, the Markov chain scheme is treated as a random design and a stratified estimator is defined for the baseline measure. Further, we propose useful techniques including subsampling, regulation, and amplification for achieving overall computational efficiency. Finally, we introduce approximate variance estimators for the point estimators. The method can yield substantially improved accuracy compared with Chib's estimator and the crude Monte Carlo estimator, as illustrated with three examples.  相似文献   

13.
Summary.  In recent years, advances in Markov chain Monte Carlo techniques have had a major influence on the practice of Bayesian statistics. An interesting but hitherto largely underexplored corollary of this fact is that Markov chain Monte Carlo techniques make it practical to consider broader classes of informative priors than have been used previously. Conjugate priors, long the workhorse of classic methods for eliciting informative priors, have their roots in a time when modern computational methods were unavailable. In the current environment more attractive alternatives are practicable. A reappraisal of these classic approaches is undertaken, and principles for generating modern elicitation methods are described. A new prior elicitation methodology in accord with these principles is then presented.  相似文献   

14.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

15.
Summary. A major difficulty in meta-analysis is publication bias . Studies with positive outcomes are more likely to be published than studies reporting negative or inconclusive results. Correcting for this bias is not possible without making untestable assumptions. In this paper, a sensitivity analysis is discussed for the meta-analysis of 2×2 tables using exact conditional distributions. A Markov chain Monte Carlo EM algorithm is used to calculate maximum likelihood estimates. A rule for increasing the accuracy of estimation and automating the choice of the number of iterations is suggested.  相似文献   

16.
17.
Markov chain Monte Carlo (MCMC) methods are now widely used in a diverse range of application areas to tackle previously intractable problems. Difficult questions remain, however, in designing MCMC samplers for problems exhibiting severe multimodality where standard methods may exhibit prohibitively slow movement around the state space. Auxiliary variable methods, sometimes together with multigrid ideas, have been proposed as one possible way forward. Initial disappointing experiments have led to data-driven modifications of the methods. In this paper, these suggestions are investigated for lattice data such as is found in imaging and some spatial applications. The results suggest that adapting the auxiliary variables to the specific application is beneficial. However the form of adaptation needed and the extent of the resulting benefits are not always clear-cut.  相似文献   

18.
Summary.  We discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the 'Global ozone monitoring of occultation of stars' instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for a more comprehensive statistical inversion are presented. A direct inversion leads to a non-linear model with hundreds of parameters to be estimated. The problem is solved with an adaptive single-step Markov chain Monte Carlo algorithm. Another approach is to divide the problem into several non-linear smaller dimensional problems, to run parallel adaptive Markov chain Monte Carlo chains for them and to solve the gas profiles in repetitive linear steps. The effect of grid size is discussed, and we present how the prior regularization takes the grid size into account in a way that effectively leads to a grid-independent inversion.  相似文献   

19.
Abstract.  Methodology for Bayesian inference is considered for a stochastic epidemic model which permits mixing on both local and global scales. Interest focuses on estimation of the within- and between-group transmission rates given data on the final outcome. The model is sufficiently complex that the likelihood of the data is numerically intractable. To overcome this difficulty, an appropriate latent variable is introduced, about which asymptotic information is known as the population size tends to infinity. This yields a method for approximate inference for the true model. The methods are applied to real data, tested with simulated data, and also applied to a simple epidemic model for which exact results are available for comparison.  相似文献   

20.
A single-population Markovian stochastic epidemic model is defined so that the underlying social structure of the population is described by a Bernoulli random graph. The parameters of the model govern the rate of infection, the length of the infectious period, and the probability of social contact with another individual in the population. Markov chain Monte Carlo methods are developed to facilitate Bayesian inference for the parameters of both the epidemic model and underlying unknown social structure. The methods are applied in various examples of both illustrative and real-life data, with two different kinds of data structure considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号